2021 Vol. 37, No. 9
Article Contents

XUE Biying, DOU Yanguang, LIN Xi, ZOU Liang, WANG Milei, HU Rui, XU Gang, YUE Baojing, ZHANG Xiaojie, DONG Jie, HAO Shengyou. BEDROCK RADON CONCENTRATION IN THE QINGDAO URBAN PLANNING AREA AND ITS BEARING ON LITHOLOGY[J]. Marine Geology Frontiers, 2021, 37(9): 10-16. doi: 10.16028/j.1009-2722.2021.116
Citation: XUE Biying, DOU Yanguang, LIN Xi, ZOU Liang, WANG Milei, HU Rui, XU Gang, YUE Baojing, ZHANG Xiaojie, DONG Jie, HAO Shengyou. BEDROCK RADON CONCENTRATION IN THE QINGDAO URBAN PLANNING AREA AND ITS BEARING ON LITHOLOGY[J]. Marine Geology Frontiers, 2021, 37(9): 10-16. doi: 10.16028/j.1009-2722.2021.116

BEDROCK RADON CONCENTRATION IN THE QINGDAO URBAN PLANNING AREA AND ITS BEARING ON LITHOLOGY

More Information
  • The bedrock of the Qingdao area is dominated by granite. This paper is devoted to the radon concentrations in various bedrocks with different characteristics and influence factors. The results show that the radon concentrations the bedrocks of Qingdao change in a range from 0.05 to 19.51 KBq/m3, with an average of 2.56 KBq/m3 (n=210), and the average is only 1.54 KBq/m3for granite, which is much lower than that of other rocks. The average of radon in other samples reads as follows: silty clay>mudstone>sandy mudstone>argillaceous sandstone>diorite>silt / filled soil>sandstone>syenogranite>coarse sand>granite>monzonitic granitic gneiss. Highest radon concentration is found in consolidated soil, followed by sedimentary rock and magmatic rock, and the lowest remains with metamorphic rocks. It is observed that the radon concentrations in bedrocks is positively related to uranium content or porosity. The highest radon concentration observed in sedimentary rocks is not only related to its high porosity, but also the water-rich sandy interlayers in the sedimentary sequence. The unconsolidated soil is loose and porous, there is large space to keep radon-bearing water in the soil.

  • 加载中
  • [1] 联合国原子能辐射效应科学委员会. 电离辐射源与效应[M]. 山西: 山西科学教育出版社, 2002: 1-281.

    Google Scholar

    [2] 张志勇, 王强. 新沂土壤中氡浓度的放射性调查研究[J]. 能源技术与管理,2014,39(02):186-188. doi: 10.3969/j.issn.1672-9943.2014.02.074

    CrossRef Google Scholar

    [3] 马吉英. 室内氡对人体健康的危害及防护[J]. 中国辐射卫生,2012,21(4):506-508.

    Google Scholar

    [4] SZAJERSKI P, ZIMNY A. Numerical analysis and modeling of two-loop experimental setup for measurements of radon diffusion rate through building and insulation materials[J]. Environmental Pollution,2020,256:113393. doi: 10.1016/j.envpol.2019.113393

    CrossRef Google Scholar

    [5] 符适, 孙浩, 张浩. 深圳市光明新区土壤氡浓度水平及分布规律调查[J]. 广东科技,2010,19(20):6-8. doi: 10.3969/j.issn.1006-5423.2010.20.001

    CrossRef Google Scholar

    [6] 王喜元. 中国土壤氡概况[M]. 北京: 科学出版社, 2006: 19-35.

    Google Scholar

    [7] 张建伟, 赵全升, 郭秀岩, 等. 聊城—兰考断裂及其土壤汞、氡气异常[J]. 中国地质,2010,37(5):1419-1425. doi: 10.3969/j.issn.1000-3657.2010.05.018

    CrossRef Google Scholar

    [8] 周云龙, 岑况, 施泽明. 四川阿坝土壤与空气中氡气浓度及分布调查[J]. 现代地质,2013,27(4):993-998. doi: 10.3969/j.issn.1000-8527.2013.04.027

    CrossRef Google Scholar

    [9] 谢润楠. 花岗石氡析出率及室内氡辐射风险评估研究[D]. 北京: 中国地质大学(北京), 2015: 8-12.

    Google Scholar

    [10] 智庆玺, 张可宗, 栾勇鹏, 等. 新空间格局下青岛城市地下空间开发战略研究[J]. 地下空间与工程学报,2014,10(S1):1518-1525.

    Google Scholar

    [11] 程业勋, 章晔, 刘庆成. 地质环境中氡浓度的影响因素[C]//1995年中国地球物理学会第十一届学术年会论文集, 湖北: 1995.

    Google Scholar

    [12] 高正, 李震, 陈鲁宁, 等. 青岛地区土壤氡填图技术方法研究[J]. 中国辐射卫生,2007,16(4):462-463. doi: 10.3969/j.issn.1004-714X.2007.04.047

    CrossRef Google Scholar

    [13] 刘庆成, 陈昌礼, 程业勋, 等. 青岛市环境氡浓度分布规律与预测方法研究[J]. 现代地质,1998(1):3-5.

    Google Scholar

    [14] NAGARAJA K, PRASAD B S N, MADHAVA M S, et al. Radon and its short-lived progeny:variations near the ground[J]. Radiation Measurements,2003,36(1):413-417.

    Google Scholar

    [15] 任天山. 室内氡的来源、水平和控制[J]. 辐射防护,2001,21(5):291-299. doi: 10.3321/j.issn:1000-8187.2001.05.005

    CrossRef Google Scholar

    [16] 秦春艳, 王南萍, 肖磊, 等. 北京广东典型地区室内氡气浓度与地质背景关系[J]. 物探与化探,2012,36(3):441-444.

    Google Scholar

    [17] 陈昌礼, 刘庆成, 孙小林. 青岛市氡的环境地质调查初探[J]. 物探与化探,1997,21(4):293-299.

    Google Scholar

    [18] 姚德, 孙梅, 杨富贵, 等. 青岛城区土壤重金属环境地球化学研究[J]. 中国地质,2008,35(3):539-550. doi: 10.3969/j.issn.1000-3657.2008.03.019

    CrossRef Google Scholar

    [19] 朱文泉. 人类环境中氡的危害及其治理[J]. 国外铀金地质,1994,11(3):244-248.

    Google Scholar

    [20] ASHEESH M, SHARMA S K, PANIGRAHI D C. 222Rn exhalation flux rate and 226Ra in the soils of a copper-mineralised area[J]. Radiation Protection Dosimetry,2020,191(4):465-476. doi: 10.1093/rpd/ncaa174

    CrossRef Google Scholar

    [21] 沈平, 朱惠英, 徐永昌. 沉积岩中铀、钍、钾分布特征[J]. 沉积学报,1983(3):109-122.

    Google Scholar

    [22] 李亚平, 许正繁. 氡的迁移富集及对环境的影响[J]. 广东地质,1999,12(2):75-78.

    Google Scholar

    [23] KUO T, TSUNOMORI F. Estimation of fracture porosity using radon as a tracer[J]. Journal of Petroleum Science and Engineering,2014,122:700-704. doi: 10.1016/j.petrol.2014.09.012

    CrossRef Google Scholar

    [24] 多斯特尔, 瞿维珍. 变质岩中的铀[J]. 放射性地质,1980,66(4):409-414.

    Google Scholar

    [25] TCHORZ-TRZECIAKIEWICZ D E, KŁOS M. Factors affecting atmospheric radon concentration, human health[J]. Science of The Total Environment,2017,584:911-920.

    Google Scholar

    [26] ROGERS V, NIELSON K. Porosity trends in radon transport through concrete and consistency in defining diffusion coefficients[J]. Health Physics,1997,72(1):153-155.

    Google Scholar

    [27] 冯酉森, 邬剑明, 王俊峰, 等. 自燃火区上覆不同孔隙率介质对氡迁移的影响探讨[J]. 煤炭技术,2014,33(6):22-24.

    Google Scholar

    [28] ISHIMORI Y, LANGE K, MARTIN P, et al. Measurement and Calculation of Radon Releases from NORM Residues[M]. Vienna: Measurement and Calculation of Radon Releases from NORM Residues, 2013: 3-16.

    Google Scholar

    [29] YUSUFF I M, ADAGUNODO T A, OMOLOYE M A, et al. Interdependency of soil-gas Ra222 concentration on soil porosity at different soil-depths[J]. Journal of Physics: Conference Series,2019,1299(1):12010-12099.

    Google Scholar

    [30] 张豫川, 潘增志, 王祖耀, 等. 砂岩与砂质泥岩渗透性能试验研究[J]. 地下空间与工程学报,2017,13(2):301-306.

    Google Scholar

    [31] 何满潮, 周莉, 李德建, 等. 深井泥岩吸水特性试验研究[J]. 岩石力学与工程学报,2008,27(6):1113-1120. doi: 10.3321/j.issn:1000-6915.2008.06.004

    CrossRef Google Scholar

    [32] 吴景浓, 龚钢延, 颜玉定, 等. 岩石渗透特性的实验研究[J]. 地震工程学报,1989,11(1):59-67.

    Google Scholar

    [33] 王伟, 郑志, 王如宾, 等. 不同应力路径下花岗片麻岩渗透特性的试验研究[J]. 岩石力学与工程学报,2016,35(2):260-267.

    Google Scholar

    [34] 周小生, 张海亮. 风化花岗岩矿物演化机理及工程特性研究[J]. 公路交通科技(应用技术版),2018,14(4):43-47.

    Google Scholar

    [35] 靳佩桦, 胡耀青, 邵继喜, 等. 高温花岗岩遇水冷却后孔隙结构及渗透性研究[J]. 太原理工大学学报,2019,50(4):478-484.

    Google Scholar

    [36] 张海薇. 四川成都地区城市地下空间氡的来源及防治[J]. 科技与创新,2016,1(11):4-5.

    Google Scholar

    [37] 国家卫生计生委卫生和计划生育监督中心. 中华人民共和国卫生标准汇编, 放射卫生标准卷(下)[S]. 北京: 中国标准出版社, 2014: 21-84.

    Google Scholar

    [38] 孙祁, 盖文佳, 江灏, 等. 地下工程降氡技术的应用与现状[J]. 辐射防护,2020,40(5):462-469.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1946) PDF downloads(166) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint