2021 Vol. 37, No. 9
Article Contents

FU Yunxia, SUN Jilin, XU Rui, WANG Milei, LV Jin, CHEN Guangquan, LIU Yanguang. STUDIES ON HYDROCHEMICAL CHARACTERISTICS AND FORMING MECHANISMS OF JIMO HOT SPRING GEOTHERMAL FIELD[J]. Marine Geology Frontiers, 2021, 37(9): 25-35. doi: 10.16028/j.1009-2722.2021.110
Citation: FU Yunxia, SUN Jilin, XU Rui, WANG Milei, LV Jin, CHEN Guangquan, LIU Yanguang. STUDIES ON HYDROCHEMICAL CHARACTERISTICS AND FORMING MECHANISMS OF JIMO HOT SPRING GEOTHERMAL FIELD[J]. Marine Geology Frontiers, 2021, 37(9): 25-35. doi: 10.16028/j.1009-2722.2021.110

STUDIES ON HYDROCHEMICAL CHARACTERISTICS AND FORMING MECHANISMS OF JIMO HOT SPRING GEOTHERMAL FIELD

More Information
  • The Jimo geothermal hot spring is an important pillar for local economy in the Qingdao region for years. The supply of hot water has gradually become insufficient with time, and many environment problems have appeared. In this paper, upon the basis of the study of regional geological background, hydrochemical and isotopic compositions of the geothermal water from the Jimo Hot Spring were systematically analyzed for the years of 2007, 2008 and 2014, in addition to the geochemistry of surrounding rocks. The research results show that the Jimo hot spring owes its origin to the unique structural conditions and excellent water storage conditions. Water is recharged from atmospheric precipitation. It goes to the deep where it is heated by deep crustal heat flow. Due to over-extraction of hot water since last decade, the geothermal water circulation rate of the hot spring has accelerated significantly. The main ions components such as Na+and Cl, as well as the hydrogen and oxygen isotope compositions, show quite significant differences caused by multi-endmember mixing and water-rock interaction. In order to improve the management of the hot spring, it is suggested that long-term seasonal and interannual observations and hydrochemical simulation be established to provide scientific monitoring for the development and management of hot spring and geothermal resources.

  • 加载中
  • [1] BERTANI R. World geothermal generation in 2007[C]//Proceedings European Geothermal Congress, Unterhaching, Germany, 2007: 1-11.

    Google Scholar

    [2] GLASSLEY W E. Geothermal energy: renewable energy and the environment[M]. Boca Raton: CRC Press, 2010.

    Google Scholar

    [3] 蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(1):312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021

    CrossRef Google Scholar

    [4] NEMZER M, PAGE D. Geothermal Energy[M]. 1994, 29(1): 92.

    Google Scholar

    [5] 张锐. 海螺沟温泉的水文地球化学特征及成因研究[D]. 四川: 成都理工大学, 2017.

    Google Scholar

    [6] 高宗军,吴立进,曹红. 山东省地热资源及其开发利用[J]. 山东科技大学学报(自然科学版),2009,28(2):1-7.

    Google Scholar

    [7] 刘焱光,曹秀云,付云霞,等. 即墨温泉地热水水质的动态变化特征[J]. 山东国土资源,2010,26(2):19-24. doi: 10.3969/j.issn.1672-6979.2010.02.005

    CrossRef Google Scholar

    [8] 栾光忠,李桂群. 胶东温泉地质地热背景及其控泉构造[J]. 青岛海洋学报,1993,23(1):75-58.

    Google Scholar

    [9] 刘焱光,付云霞,吴世迎. 即墨温泉地热水的氢氧同位素特征及其地质意义[J]. 海岸工程,2009,28(2):52-60. doi: 10.3969/j.issn.1002-3682.2009.02.007

    CrossRef Google Scholar

    [10] 栾光忠,张海平. 青岛沧口-温泉断裂的空间展布及现代活动性研究[J]. 地震地质,2001,23(1):63-68.

    Google Scholar

    [11] 栾光忠,王文正,刘东生,等. 青岛即墨温泉喷流沉积物及其沉积模式[J]. 地球学报,2003,24(4):357-360. doi: 10.3321/j.issn:1006-3021.2003.04.012

    CrossRef Google Scholar

    [12] 金秉福,张云吉,栾光忠. 胶东温泉的地热特征[J]. 西安工程学院学报,2000,22(1):54-58.

    Google Scholar

    [13] 王桂玲,尹明泉,张日田. 采用水化学方法对青岛北部地区资源远景的探讨[J]. 山东地质,2003,19(2):46-50.

    Google Scholar

    [14] 徐锐,董杰,曹立雪,等. 山东即墨温泉资源开发利用与可开采水量评价[J]. 地质学报,2019,93(s1):206-211.

    Google Scholar

    [15] 王昕昀. 山东半岛西部温泉水化学特征及成因研究[D]. 北京: 中国地质大学(北京), 2018.

    Google Scholar

    [16] 李乃胜. 崂山地质与古冰川研究[M]. 北京: 海洋出版社, 2005.

    Google Scholar

    [17] 山东省地矿工程集团有限公司. 《山东省即墨市温泉镇地区地热资源普查报告》[R]. 济南, 2006.

    Google Scholar

    [18] 周训, 金晓媚, 梁四海, 等. 地下水科学专论[M]. 北京: 地质出版社, 2017.

    Google Scholar

    [19] 熊贵耀,付腾飞,韩江波,等. 大沽河流域地下水水化学及同位素特征[J]. 海洋科学进展,2019,37(4):626-638.

    Google Scholar

    [20] 杨吉龙,柳富田,贾志,等. 河北牛驼镇与天津地热田水化学和氢氧同位素特征及其环境指示意义[J]. 地球学报,2018,39(1):71-78. doi: 10.3975/cagsb.2017.122801

    CrossRef Google Scholar

    [21] 赵永红,杨家英,王航,等. 地热水氢氧同位素分布特性[J]. 地球物理学进展,2017,32(6):2415-2423. doi: 10.6038/pg20170618

    CrossRef Google Scholar

    [22] 汪洋. 应用大地热流和地下流体氦同位素组成资料计算中国大陆地壳生热元素丰度[J]. 中国地质,2006,33(4):920-927. doi: 10.3969/j.issn.1000-3657.2006.04.022

    CrossRef Google Scholar

    [23] PEIFFER L,WANNER C,SPYCHER N,et al. Optimized multicomponent vs. classical geothermometry:Insights from modeling studies at the dixie valley geothermal area[J]. Geothermics,2014,51:154-169. doi: 10.1016/j.geothermics.2013.12.002

    CrossRef Google Scholar

    [24] 李洁祥,郭清海,余正艳. 高温地热系统中黏土矿物形成对Na-K和K-Mg地球化学温标准确性的影响[J]. 地球科学,2017,42(1):142-154.

    Google Scholar

    [25] 王欣,漆继红,许模,等. Na-K-Mg三角图修正与Na-K温标选取[J]. 煤田地质与勘探,2019,47(2):121-128.

    Google Scholar

    [26] ARNORSSON S,GUNNLAUGSSON E,SVAVARSSON H. The chemistry of geothermal waters in Iceland 2:Mineral equilibria and independent variables controlling water compositions[J]. Geochimica et Cosmochimica Acta,1983,47(3):547-566. doi: 10.1016/0016-7037(83)90277-6

    CrossRef Google Scholar

    [27] 山东省第三地质矿产勘查院. 《山东省胶东半岛深部地热赋存条件研究报告》[R]. 烟台, 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(2940) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint