2021 Vol. 37, No. 7
Article Contents

SONG Peng. SHALLOW MIGRATION AND ACCUMULATION SYSTEMS IN THE DEEP WATER AREAS OF THE QIONGDONGNAN BASIN AND THEIR CONTROL ON NATURAL GAS HYDRATE ACCUMULATION[J]. Marine Geology Frontiers, 2021, 37(7): 11-21. doi: 10.16028/j.1009-2722.2021.088
Citation: SONG Peng. SHALLOW MIGRATION AND ACCUMULATION SYSTEMS IN THE DEEP WATER AREAS OF THE QIONGDONGNAN BASIN AND THEIR CONTROL ON NATURAL GAS HYDRATE ACCUMULATION[J]. Marine Geology Frontiers, 2021, 37(7): 11-21. doi: 10.16028/j.1009-2722.2021.088

SHALLOW MIGRATION AND ACCUMULATION SYSTEMS IN THE DEEP WATER AREAS OF THE QIONGDONGNAN BASIN AND THEIR CONTROL ON NATURAL GAS HYDRATE ACCUMULATION

  • Continuous 3D seismic survey has been carried out in the Qiongdongnan Basin, and various types of migration channels are discovered. Based on the characteristics of shallow migration and accumulation system in the deep-water areas of the basin, this paper is devoted to the mechanisms which controls the deposition and accumulation of natural gas hydrate (NGH). Favorable target areas for NGH exploration are predicted upon the basis. It is revealed that the shallow fluid migration channels of the Qiongdongnan Basin mainly consist of faults, gas chimneys, fractures, erosion unconformities and large reservoirs along the border of the basin. Various types of migration channels are always combined in space to form shallow migration and accumulation systems. The development status of the shallow fluid migration channels system varies from place to place. The most developed areas include the Lingnan - Songnan Low Uplift and the Central Depression of the basin, while in the shallow water areas, the systems are relatively undeveloped. The shallow fluid migration and accumulation systems in the deep-water areas of the Qiongdongnan Basin not only control the distribution of NGH, but also influence the gas exploration of the middle and deep layer deposits. To sum up, the shallow fluid migration channels are relatively developed in the Qiongdongnan Basin, and the Lingnan-Songnan Low Uplift is the most favorable zone within the basin, and the continental slope areas of the Songnan-Baodao Sag also have excellent conditions for NGH accumulation.

  • 加载中
  • [1] 谢玉洪. 南海北部自营深水天然气勘探重大突破及其启示[J]. 天然气工业, 2014, 34(10): 1-8.

    Google Scholar

    [2] 王振峰,孙志鹏,朱继田,等. 南海西部深水区天然气地质与大气田重大发现[J]. 天然气工业,2015,35(10):11-20. doi: 10.3787/j.issn.1000-0976.2015.10.002

    CrossRef Google Scholar

    [3] 何家雄,苏丕波,卢振权,等. 南海北部琼东南盆地天然气水合物气源及运聚成藏模式预测[J]. 天然气工业,2015,35(8):19-29. doi: 10.3787/j.issn.1000-0976.2015.08.003

    CrossRef Google Scholar

    [4] 吴时国,龚跃华,米立军,等. 南海北部深水盆地油气运移系统及天然气水合物成藏机制研究[J]. 现代地质,2010,24(3):433-440. doi: 10.3969/j.issn.1000-8527.2010.03.003

    CrossRef Google Scholar

    [5] YE J L,WEI J G,LIANG J Q,et al. Complex gas hydrate system in a gas chimney,South China Sea[J]. Marine and Petroleum Geology,2019,104:29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    CrossRef Google Scholar

    [6] LIANG J Q,ZHANG W,LU J A,et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea:insights from site GMGS5-W9-2018[J]. Marine Geology,2019,418:106042. doi: 10.1016/j.margeo.2019.106042

    CrossRef Google Scholar

    [7] 张伟,梁金强,陆敬安,等. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业,2020,40(8):90-99. doi: 10.3787/j.issn.1000-0976.2020.08.007

    CrossRef Google Scholar

    [8] 何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):1-14.

    Google Scholar

    [9] 何家雄,卢振权,苏丕波,等. 南海北部天然气水合物气源系统与成藏模式[J]. 西南石油大学学报(自然科学版),2016,38(6):8-24.

    Google Scholar

    [10] 吴能友,杨胜雄,王宏斌,等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报,2009,52(6):1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027

    CrossRef Google Scholar

    [11] 龚跃华,杨胜雄,王宏斌,等. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版),2018,48(4):1030-1042.

    Google Scholar

    [12] 王秀娟,吴时国,董冬冬,等. 琼东南盆地气烟囱构造特点及其与天然气水合物的关系[J]. 海洋地质与第四纪地质,2008,28(3):103-108.

    Google Scholar

    [13] 张伟,何家雄,卢振权,等. 琼东南盆地疑似泥底辟与天然气水合物成矿成藏关系初探[J]. 天然气地球科学,2015,26(11):2185-2197. doi: 10.11764/j.issn.1672-1926.2015.11.2185

    CrossRef Google Scholar

    [14] 吴时国,姚根顺,董冬冬,等. 南海北部陆坡大型气田区天然气水合物的成藏地质构造特征[J]. 石油学报,2008,29(3):324-328. doi: 10.3321/j.issn:0253-2697.2008.03.002

    CrossRef Google Scholar

    [15] 姚永坚,黄永样,吴能友,等. 天然气水合物的形成条件及勘探现状[J]. 新疆石油地质,2007,28(6):668-672. doi: 10.3969/j.issn.1001-3873.2007.06.002

    CrossRef Google Scholar

    [16] 吴能友,张海啟,杨胜雄,等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业,2007,27(9):1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001

    CrossRef Google Scholar

    [17] 苏丕波,何家雄,梁金强,等. 南海北部陆坡深水区天然气水合物成藏系统及其控制因素[J]. 海洋地质前沿,2017,33(7):1-10.

    Google Scholar

    [18] 刘杰,杨睿,张金华,等. 琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测[J]. 海洋地质与第四纪地质,2019,39(1):134-142.

    Google Scholar

    [19] 赖亦君,杨涛,梁金强,等. 南海北部陆坡珠江口盆地东南海域GMGS2-09井孔隙水地球化学特征及其对天然气水合物的指示意义[J]. 海洋地质与第四纪地质,2019,39(3):135-142.

    Google Scholar

    [20] 王秀娟,吴时国,董冬冬,等. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用[J]. 海洋地质与第四纪地质,2011,31(1):109-118.

    Google Scholar

    [21] 吴能友,孙治雷,卢建国,等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质,2019,39(5):23-35.

    Google Scholar

    [22] 李绪宣,钟志洪,董伟良,等. 琼东南盆地古近纪裂陷构造特征及其动力学机制[J]. 石油勘探与开发,2006,33(6):713-721. doi: 10.3321/j.issn:1000-0747.2006.06.014

    CrossRef Google Scholar

    [23] 谢文彦,张一伟,孙珍,等. 琼东南盆地断裂构造与成因机制[J]. 海洋地质与第四纪地质,2007,27(1):71-78.

    Google Scholar

    [24] 雷超,任建业,裴健翔,等. 琼东南盆地深水区构造格局和幕式演化过程[J]. 地球科学(中国地质大学学报),2011,36(1):151-162.

    Google Scholar

    [25] 苏明,解习农,王振峰,等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报,2013,34(3):467-478. doi: 10.7623/syxb201303007

    CrossRef Google Scholar

    [26] CARTWRIGHT J A. Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin[J]. Marine and Petroleum Geology,1994,11(5):587-607. doi: 10.1016/0264-8172(94)90070-1

    CrossRef Google Scholar

    [27] HANSEN D M,SHIMELDB J W,WILLIAMSONB M A,et al. Development of a major polygonal fault system in Upper Cretaceous chalk and Cenozoic mud rocks of the Sable Subbasin,Canadian Atlantic margin[J]. Marine and Petroleum Geology,2004,21:1205-1219. doi: 10.1016/j.marpetgeo.2004.07.004

    CrossRef Google Scholar

    [28] GAY A,LOPEZ M,COCHONAT P,et al. Polygonal faults-furrows system related to early stages of compaction-upper Miocene to recent sediments of the Lower Congo Basin[J]. Basin Research,2004,16:101-116. doi: 10.1111/j.1365-2117.2003.00224.x

    CrossRef Google Scholar

    [29] 吴时国,孙启良,吴拓宇,等. 琼东南盆地深水区多边形断层的发现及其油气意义[J]. 石油学报,2009,30(1):22-26. doi: 10.3321/j.issn:0253-2697.2009.01.004

    CrossRef Google Scholar

    [30] 王秀娟,吴时国,王大伟,等. 琼东南盆地多边形断层在流体运移和天然气水合物成藏中的作用[J]. 石油地球物理勘探,2010,45(1):122-128.

    Google Scholar

    [31] 张伟,梁金强,何家雄,等. 南海北部陆坡泥底辟/气烟囱基本特征及其与油气和水合物成藏关系[J]. 海洋地质前沿,2017,33(7):11-23.

    Google Scholar

    [32] 王静丽,梁金强,沙志彬,等. 南海北部琼东南海域气烟囱发育特征及其对水合物形成与分布的影响[J]. 海洋地质前沿,2017,33(3):1-6.

    Google Scholar

    [33] 张为民,李继亮,钟嘉猷,等. 气烟囱的形成机理及其与油气的关系探讨[J]. 地质科学,2000,35(4):449-456. doi: 10.3321/j.issn:0563-5020.2000.04.008

    CrossRef Google Scholar

    [34] 何家雄,祝有海,翁荣南,等. 莺歌海盆地油气运移系统及油气勘探前景[J]. 西南石油大学学报(自然科学版),2010,32(1):1-10.

    Google Scholar

    [35] 朱继田,邓勇,郭明刚,等. 琼东南盆地盆底平原区天然气水合物成矿条件及成藏模式[J]. 中国海上油气,2020,32(3):10-19.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(746) PDF downloads(28) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint