2022 Vol. 38, No. 3
Article Contents

ZHANG Lifu, QU Kang, WU Xiang'en, WEN Mingming, LV Wanjun. The development of in situ detection technology and device for dissolved methane and carbon dioxide in deep sea[J]. Marine Geology Frontiers, 2022, 38(3): 1-18. doi: 10.16028/j.1009-2722.2021.030
Citation: ZHANG Lifu, QU Kang, WU Xiang'en, WEN Mingming, LV Wanjun. The development of in situ detection technology and device for dissolved methane and carbon dioxide in deep sea[J]. Marine Geology Frontiers, 2022, 38(3): 1-18. doi: 10.16028/j.1009-2722.2021.030

The development of in situ detection technology and device for dissolved methane and carbon dioxide in deep sea

More Information
  • The geological and biogeochemical cycle of methane and carbon dioxide in the ocean has an important impact on the marine environment and global climate change. In many deep-sea environments, methane and carbon dioxide usually diffuse in the form of bubbles or fluids, Methane is also one of the important indicators to detect the resources of natural gas hydrates. At present, in order to promote the study of marine carbon cycle and flux, research groups at home and abroad have proposed new technologies and methods for in-situ detection of dissolved methane and carbon dioxide in the ocean under various backgrounds. In this paper, the latest progress of in situ detection of dissolved methane and carbon dioxide in the ocean based on electrochemical, optical, mass spectrometry and biosensor technologies is reviewed, the working principle and performance of each sensor are introduced systematically, the application value and prospect of it are analyzed, and some suggestions for future research are put forward.

  • 加载中
  • [1] DI P,FENG D,CHEN D. The distribution of dissolved methane and its air-sea flux in the plume of a seep field,Lingtou Promontory,South China Sea[J]. Geofluids,2019:1-12.

    Google Scholar

    [2] 汪思茹,殷克东,蔡卫君,等. 海洋酸化生态学研究进展[J]. 生态学报,2012,32(18):5859-5869.

    Google Scholar

    [3] HARTMANN J F,GENTZ T,SCHILLER A,et al. A fast and sensitive method for the continuous in situ determination of dissolved methane and its δ13C‐isotope ratio in surface waters[J]. Limnology and Oceanography:Methods,2018,16(5):273-285.

    Google Scholar

    [4] SAUNOIS M,BOUSQUET P,POULTER B,et al. The global methane budget 2000–2012[J]. Earth System Science Data,2016,8(2):697-751. doi: 10.5194/essd-8-697-2016

    CrossRef Google Scholar

    [5] 于新生,李丽娜,胡亚丽,等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展,2011,26(10):1030-1037.

    Google Scholar

    [6] BEER D D,GLUD A,KUHL E M. A fast-responding CO2 microelectrode for profiling sediments,microbial mats,and biofilms[J]. Limnology and Oceanography,1997,42(7):1590-1600. doi: 10.4319/lo.1997.42.7.1590

    CrossRef Google Scholar

    [7] ZHAO P,CAI W J. An improved potentiometric pCO2 microelectrode[J]. Analytical Chemistry,1997,69(24):5052-5058. doi: 10.1021/ac970747g

    CrossRef Google Scholar

    [8] GARCIAL M L,MASSON M. Environmental and geologic application of solid-state methane sensors[J]. Environmental Geology,2004,46(8):1059-1063. doi: 10.1007/s00254-004-1093-1

    CrossRef Google Scholar

    [9] FUKASAWA T, HOZUMI S, MORITA M, et al. Dissolved methane sensor for methane leakage monitoring in methane hydrate production[C]//OCEANS 2006. IEEE, 2006: 1-6.

    Google Scholar

    [10] FUKASAWA T, OKETANI T, MASSON M, et al. Optimized METS sensor for methane leakage monitoring [C]//OCEANS 2008- MTS/IEEE Kobe Techno-Ocean. IEEE, 2008: 1- 8

    Google Scholar

    [11] ALEKSANYAN M S. Methane sensor based on SnO2/In2O3/TiO2 nanostructure[J]. Journal of Contemporary Physics (Armenian Academy of Sciences),2010,45(2):77-80. doi: 10.3103/S1068337210020052

    CrossRef Google Scholar

    [12] 申正伟,孙春岩,贺会策,等. 深海原位溶解甲烷传感器(METS)的原理及应用研究[J]. 海洋技术学报,2015,34(5):19-25.

    Google Scholar

    [13] DI P,FENG D,CHEN D. In- Situ and On- Line Measurement of Gas Flux at a Hydrocarbon Seep from the Northern South China Sea[J]. Continental Shelf Research,2014,81:80-87. doi: 10.1016/j.csr.2014.04.001

    CrossRef Google Scholar

    [14] NEWMAN K,CORMIER M,WEISSEL J,et al. Active methane venting observed at giant pockmarks along the US mid-Atlantic shelf break[J]. Earth and Planetary Science Letters,2008,267(1/2):341-352.

    Google Scholar

    [15] 孙春岩,赵浩,贺会策,等. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘,2017,24(6):225-241.

    Google Scholar

    [16] 一种海水中甲烷浓度原位探测系统 [P]. 中国, CN102288719A. 2013-09-25.

    Google Scholar

    [17] 张志冰. 海水中甲烷浓度原位地球化学探测系统的研发与应用[D]. 北京: 中国地质大学(北京), 2013.

    Google Scholar

    [18] 孙春岩,王栋琳,张仕强,等. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探,2019,43(1):1-16.

    Google Scholar

    [19] ATHAVALE R,PANKRATOVA N,DINKEL C,et al. Fast potentiometric CO2 sensor for high-resolution in situ measurements in fresh water systems[J]. Environmental Science and Technology,2018,52(19):11259-11266. doi: 10.1021/acs.est.8b02969

    CrossRef Google Scholar

    [20] 高红秀, 金萍, 周玉岩, 等. 近红外光谱分析原理、检测及定标技术简介[J]. 中国科技信息. 2014, (Z1): 59-61.

    Google Scholar

    [21] 刘宏民. 实用有机光谱解析[M]. 郑州: 郑州大学出版社, 2008.

    Google Scholar

    [22] WANKEL S D,HUANG Y W,GUPTA M,et al. Characterizing the distribution of methane sources and cycling in the deep sea via in situ stable isotope analysis[J]. Environmental Science andTechnology,2012,47(3):1478-1486.

    Google Scholar

    [23] FIETZEK P, KRAMER S, ESSER D. Deployments of the HydroC™(CO 2/CH 4) on stationary and mobile platforms-Merging trends in the field of platform and sensor development[C]//OCEANS'11 MTS/IEEE KONA. IEEE, 2011: 1-9.

    Google Scholar

    [24] FIETZEK P,FIEDLER,BJÖRN,STEINHOFF T,et al. In situ Quality Assessment of a Novel Underwater pCO2 Sensor Based on Membrane Equilibration and NDIR Spectrometry[J]. Journal of Atmospheric and Oceanic Technology,2014,31(1):181-196.

    Google Scholar

    [25] BOULART C,CONNELLY D P,MOWLEM M C. Sensors and technologies for in situ dissolved methane measurements and their evaluation using Technology Readiness Levels[J]. Trends in Analytical Chemistry,2010,29(2):186-195. doi: 10.1016/j.trac.2009.12.001

    CrossRef Google Scholar

    [26] CANNING A,FIETZEK P,REHDER G,et al. Seamless gas measurements across the land–ocean aquatic continuum–corrections and evaluation of sensor data for CO2,CH4 and O2 from field deployments in contrasting environments[J]. Biogeosciences,2021,18(4):1351-1373. doi: 10.5194/bg-18-1351-2021

    CrossRef Google Scholar

    [27] CONTROS HydroC® CH4 User manual[M]. Wischhofstrasse 1-3, Bld. 2, 24148 Kiel, Germany: Kongsberg Maritime AS, 2017.

    Google Scholar

    [28] CONTROS HydroC® CO2 User manual[M]. Kongsberg Maritime AS, Wischhofstrasse 1-3, Bld. 2, 24148 Kiel, Germany: Kongsberg Maritime AS, 2017.

    Google Scholar

    [29] GÜLZOW W,REHDER G,SCHNEIDER B,et al. A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis integrated cavity output spectroscopy (ICOS):an example from the Baltic Sea[J]. Limnology and Oceanography:Methods,2011,9(5):176-184.

    Google Scholar

    [30] LGR DWGA Datasheet[M/OL]. [2021-02-03]. http://www.lgrinc.com/documents/LGR_DWGA_Datasheet.pdf.

    Google Scholar

    [31] MICHEL A,WANKEL S,KAPIT J,et al. In situ carbon isotopic exploration of an active submarine volcano[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2018,150:57-66. doi: 10.1016/j.dsr2.2017.10.004

    CrossRef Google Scholar

    [32] GRILLI R,TRIEST J,CHAPPELLAZ J,et al. Sub-ocean:subsea dissolved methane measurements using an embedded laser spectrometer technology[J]. Environmental Science and Technology,2018,52(18):10543-10551. doi: 10.1021/acs.est.7b06171

    CrossRef Google Scholar

    [33] GRILLI R,DARCHAMBEAU F,CHAPPELLAZ J,et al. Continuous in situ measurement of dissolved methane in Lake Kivu using a membrane inlet laser spectrometer[J]. Geoscientific Instrumentation,Methods and Data Systems,2020,9(1):141-151. doi: 10.5194/gi-9-141-2020

    CrossRef Google Scholar

    [34] JANSSON P,TRIEST J,GRILLI R,et al. High-resolution under-water laser spectrometer sensing provides new insights to methane distribution at an Arctic seepage site[J]. Ocean Science Discussions,2019:1-21.

    Google Scholar

    [35] YUAN F,HU M,HE Y,et al. Development of an in situ analysis system for methane dissolved in seawater based on cavity ringdown spectroscopy[J]. Review of Scientific Instruments,2020,91(8):083106. doi: 10.1063/5.0004742

    CrossRef Google Scholar

    [36] PEJCIC B,EADINGTON P,ROSS A. Environmental monitoring of hydrocarbons:a chemical sensor perspective[J]. Environmental Science and Technology,2007,41(18):6333-6342. doi: 10.1021/es0704535

    CrossRef Google Scholar

    [37] 邓小红. 光纤消逝波吸收传感器的参数设计与分析[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2005.

    Google Scholar

    [38] PEJCIC B,MYERS M,ROSS A. Mid-infrared sensing of organic pollutants in aqueous environments[J]. Sensors,2009,9(8):6232-6253. doi: 10.3390/s90806232

    CrossRef Google Scholar

    [39] MIZAIKOFF B. Mid-infrared evanescent wave sensors-a novel approach for subsea monitoring[J]. Measurement Science and Technology,1999,10(12):1185. doi: 10.1088/0957-0233/10/12/310

    CrossRef Google Scholar

    [40] SCHÄDLE T,PEJCIC B,MYERS M,et al. Portable mid-infrared sensor system for monitoring CO2 and CH4 at high pressure in geosequestration scenarios[J]. Acs Sensors,2016,1(4):413-419. doi: 10.1021/acssensors.5b00246

    CrossRef Google Scholar

    [41] LINDECRANTZ S M. Waveguide Mach-Zehnder interferometer for measurement of methane dissolved in water[D]. Tromso: The Arctic University of Norway, 2016.

    Google Scholar

    [42] BOULART C,MOWLEM M C,CONNELLY D P,et al. A novel,low-cost,high performance dissolved methane sensor for aqueous environments[J]. Optics Express,2008,16(17):12607-12617. doi: 10.1364/OE.16.012607

    CrossRef Google Scholar

    [43] BENOUNIS M,JAFFREZIC-RENAULT N,DUTASTA J P,et al. Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules[J]. Sensors and Actuators B:Chemical,2005,107(1):32-39. doi: 10.1016/j.snb.2004.10.063

    CrossRef Google Scholar

    [44] BOULART C,PRIEN R,CHAVAGNAC V,et al. Sensing dissolved methane in aquatic environments:an experiment in the central Baltic Sea using surface plasmon resonance[J]. Environmental Science and Technology,2013,47(15):8582-8590.

    Google Scholar

    [45] SIARKOWSKI A L,HERNANDEZ L F,MORIMOTO N I,et al. Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection[J]. Optical Engineering,2012,51(5):054401. doi: 10.1117/1.OE.51.5.054401

    CrossRef Google Scholar

    [46] DULLO F T,LINDECRANTZ S,JÁGERSKÁ J,et al. Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer[J]. Optics Express,2015,23(24):31564-31573. doi: 10.1364/OE.23.031564

    CrossRef Google Scholar

    [47] 陆同兴, 路秩群. 激光光谱技术原理及应用[M] . 北京: 中国科技大学出版社, 2006: 263 -279.

    Google Scholar

    [48] BREWER P G,MALBY G,PASTERIS J D,et al. Development of a laser Raman spectrometer for deep-ocean science[J]. Deep Sea Research Part I:Oceanographic Research Papers,2004,51(5):739-753. doi: 10.1016/j.dsr.2003.11.005

    CrossRef Google Scholar

    [49] WHITE S N, DUNK R M, PELTZER E T, et al. In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge)[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(5): 123.

    Google Scholar

    [50] WHITE S N. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals[J]. Chemical Geology,2009,259(3/4):240-252.

    Google Scholar

    [51] HESTER K C,DUNK R M,WHITE S N,et al. Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy[J]. Geochimica et Cosmochimica Acta,2007,71(12):2947-2959. doi: 10.1016/j.gca.2007.03.032

    CrossRef Google Scholar

    [52] ZHANG X,WALZ P M,KIRKWOOD W J,et al. Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry[J]. Deep Sea Research Part I:Oceanographic Research Papers,2010,57(2):297-306. doi: 10.1016/j.dsr.2009.11.004

    CrossRef Google Scholar

    [53] ZHANG X, HESTER K C, USSLER W, et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments[J]. Geophysical Research Letters, 2011, 38(8): L08605.

    Google Scholar

    [54] ZHANG X,DU Z,ZHENG R,et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids[J]. Deep Sea Research Part I:Oceanographic Research Papers,2017,123:1-12. doi: 10.1016/j.dsr.2017.02.005

    CrossRef Google Scholar

    [55] LI L,ZHANG X,LUAN Z,et al. In situ quantitative Raman detection of dissolved carbon dioxide and sulfate in deep-sea high-temperature hydrothermal vent fluids[J]. Geochemistry,Geophysics,Geosystems,2018,19(6):1809-1823.

    Google Scholar

    [56] LI L,ZHANG X,LUAN Z,et al. Hydrothermal Vapor‐Phase Fluids on the Seafloor:Evidence From In Situ Observations[J]. Geophysical Research Letters,2020,47(10):e2019GL085778.

    Google Scholar

    [57] ZHANG X,LI L F,DU Z F,et al. Discovery of supercritical carbon dioxide in a hydrothermal system[J]. Science Bulletin,2020,65(11):958-964. doi: 10.1016/j.scib.2020.03.023

    CrossRef Google Scholar

    [58] DU Z,ZHANG X,LUAN Z,et al. In situ Raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea[J]. Geochemistry,Geophysics,Geosystems,2018,19(7):2049-2061.

    Google Scholar

    [59] 徐伟,马兆铭,王克家,等. 深海甲烷激光拉曼光谱原位探测器的研究[J]. 传感器与微系统,2008,27(6):66-68,72. doi: 10.3969/j.issn.1000-9787.2008.06.021

    CrossRef Google Scholar

    [60] YANG D,GUO J,LIU Q,et al. Highly sensitive Raman system for dissolved gas analysis in water[J]. Applied Optics,2016,55(27):7744-7748. doi: 10.1364/AO.55.007744

    CrossRef Google Scholar

    [61] SCHMIDT H,HA N B,PFANNKUCHE J,et al. Detection of PAHs in Seawater Using Surface-enhanced Raman Scattering (SERS)[J]. Marine Pollution Bulletin,2004,49(3):229-234. doi: 10.1016/j.marpolbul.2004.02.011

    CrossRef Google Scholar

    [62] SOWOIDNICH K, FERNÁNDEZ LÓPEZ M, KRONFELDT H D. Innovative Raman spectroscopic concepts for in situ monitoring of chemicals in seawater[C]//Proceeding of SPIE, 2013, 8718: 871802-1.

    Google Scholar

    [63] MAHER S,JJUNJU F P M,Taylor S. Colloquium:100 years of mass spectrometry:Perspectives and future trends[J]. Reviews of Modern Physics,2015,87(1):113. doi: 10.1103/RevModPhys.87.113

    CrossRef Google Scholar

    [64] CAMILLI R,REDDY C M,YOERGER D R,et al. Tracking hydrocarbon plume transport and biodegradation at deepwater horizon[J]. Science,2010,330(6001):201-204. doi: 10.1126/science.1195223

    CrossRef Google Scholar

    [65] GENTZ T,SCHLÜTER M. Underwater cryotrap-membrane inlet system (CT-MIS) for improved in situ analysis of gases[J]. Limnology and Oceanography:Methods,2012,10(5):317-328.

    Google Scholar

    [66] CAMILLI R,DURYEA A N. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry[J]. Environmental Science and Technology,2009,43(13):5014-5021. doi: 10.1021/es803717d

    CrossRef Google Scholar

    [67] BELL R J,SAVIDGE W B,TOLER S K,et al. In situ determination of porewater gases by underwater flow-through membrane inlet mass spectrometry[J]. Limnology and Oceanography:Methods,2012,10(3):117-128.

    Google Scholar

    [68] CHUA E J,SAVIDGE W,SHORT R T,et al. A review of the emerging field of underwater mass spectrometry[J]. Frontiers in Marine Science,2016,3:209.

    Google Scholar

    [69] HEMOND H,CAMILLI R. Nereus:engineering concept for an underwater mass spectrometer[J]. Trends in Analytical Chemistry,2002,21(8):526-533. doi: 10.1016/S0165-9936(02)00113-9

    CrossRef Google Scholar

    [70] CAMILI R,HEMOND H F. Nereis/kemonaut,a mobile autonomous underwater mass spectrometer[J]. TrAC Trends in Analytical Chemistry,2004,23(24):307-313.

    Google Scholar

    [71] CAMILLI R,DURYEA A. Characterizing marine hydrocarbons with insitu mass spectrometry[J]. IEEE/MTS OCEANS'07,2007:1-7.

    Google Scholar

    [72] CAMILLI R,NOMIKOU P,ESCARTÍN J,et al. The Kallisti Limnes,carbon dioxide-accumulating subsea pools[J]. Scientific Reports,2015,5(1):1-9. doi: 10.9734/JSRR/2015/14076

    CrossRef Google Scholar

    [73] SCHLÜTER M,GENTZ T. Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments[J]. Journal of the American Society for Mass Spectrometry,2008,19(10):1395-1402. doi: 10.1016/j.jasms.2008.07.021

    CrossRef Google Scholar

    [74] GENTZ T,DAMM E,VON DEIMLING J S,et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin[J]. Continental Shelf Research,2014,72:107-118. doi: 10.1016/j.csr.2013.07.013

    CrossRef Google Scholar

    [75] BELOFF B. Lessons from the DeepWater Horizon debacle:a precautionary tale[J]. Clean Technologies and Environmental Policy,2010,12(4):331-333. doi: 10.1007/s10098-010-0308-2

    CrossRef Google Scholar

    [76] BELL R J,SHORT R T,VAN AMEROM F H W,et al. Calibration of an in situ membrane inlet mass spectrometer for measurements of dissolved gases and volatile organics in seawater[J]. Environmental Science and Technology,2007,41(23):8123-8128. doi: 10.1021/es070905d

    CrossRef Google Scholar

    [77] In-water mass spectrometry for characterization of light hydrocarbon seeps and leaks[M/OL]. [2021-02-03]. http://www.hems-workshop.org/10thWS/Talks/Short.pdf

    Google Scholar

    [78] BELL R J,SHORT R T,BYRNE R H. In situ determination of total dissolved inorganic carbon by underwater membrane introduction mass spectrometry[J]. Limnology and Oceanography:Methods,2011,9(4):164-175.

    Google Scholar

    [79] BELL R J,SAVIDGE W B,TOLER S K,et al. In situ determination of porewater gases by underwater flow-through membrane inlet mass spectrometry[J]. Limnology and Oceanography Methods,2012,10(3):117-128.

    Google Scholar

    [80] WANKEL S D,JOYE S B,SAMARKIN V A,et al. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2010,57(21/23):2022-2029.

    Google Scholar

    [81] WANKEL S D,GERMANOVICH L N,LILLEY M D,et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids[J]. Nature Geoscience,2011,4(7):461-468. doi: 10.1038/ngeo1183

    CrossRef Google Scholar

    [82] APPOLINARIO L R,TSCHOEKE D,CALEGARIO G,et al. Oil leakage induces changes in microbiomes of deep-sea sediments of Campos Basin (Brazil)[J]. Science of The Total Environment,2020,740:139556. doi: 10.1016/j.scitotenv.2020.139556

    CrossRef Google Scholar

    [83] SALVADOR J,KOPPER K,MITI A,et al. Multiplexed immunosensor based on the amperometric transduction for monitoring of marine pollutants in sea water[J]. Sensors,2020,20(19):5532. doi: 10.3390/s20195532

    CrossRef Google Scholar

    [84] WANG Q,YANG Q,WU W. Ensuring seafood safe to spoon:a brief review of biosensors for marine biotoxin monitoring[J]. Critical Reviews in Food Science and Nutrition,2020(3):1-13.

    Google Scholar

    [85] TIAN Y,DU L,ZHU P,et al. Recent progress in micro/nano biosensors for shellfish toxin detection[J]. Biosensors and Bioelectronics,2020,176(1):112899.

    Google Scholar

    [86] DAMGAARD L R,REVSBECH N P. A microscale biosensor for methane containing methanotrophic bacteria and an internal oxygen reservoir[J]. Analytical Chemistry,1997,69(13):2262-2267. doi: 10.1021/ac9611576

    CrossRef Google Scholar

    [87] DAMGAARD L R,NIELSEN L P,REVSBECH N P. Methane microprofiles in a sewage biofilm determined with a microscale biosensor[J]. Water Research,2001,35(6):1379-1386. doi: 10.1016/S0043-1354(00)00412-7

    CrossRef Google Scholar

    [88] WEN G,ZHENG J,ZHAO C,et al. A microbial biosensing system for monitoring methane[J]. Enzyme and Microbial Technology,2008,43(3):257-261. doi: 10.1016/j.enzmictec.2008.04.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(3)

Article Metrics

Article views(5489) PDF downloads(807) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint