2021 Vol. 37, No. 6
Article Contents

SHENG Jiangyuan, FU Heping, MA Xiao, XU Hong, ZHAO Qiang, CHEN Xiangyu, LI Xushen, ZHANG Daojun, LIU Xinyu, YAN Zhuoyu. SPATIAL DISTRIBUTION OF ANKERITE AND DOLOMITE IN THE XISHA ISLANDS: EVIDENCE FROM GEOCHEMISTRY[J]. Marine Geology Frontiers, 2021, 37(6): 18-30. doi: 10.16028/j.1009-2722.2020.198
Citation: SHENG Jiangyuan, FU Heping, MA Xiao, XU Hong, ZHAO Qiang, CHEN Xiangyu, LI Xushen, ZHANG Daojun, LIU Xinyu, YAN Zhuoyu. SPATIAL DISTRIBUTION OF ANKERITE AND DOLOMITE IN THE XISHA ISLANDS: EVIDENCE FROM GEOCHEMISTRY[J]. Marine Geology Frontiers, 2021, 37(6): 18-30. doi: 10.16028/j.1009-2722.2020.198

SPATIAL DISTRIBUTION OF ANKERITE AND DOLOMITE IN THE XISHA ISLANDS: EVIDENCE FROM GEOCHEMISTRY

More Information
  • Dolomite and ankerite are widely distributed in the Xisha Islands. So far, seven layers of dolomite have been found in the well Xike 1. The seven layers of dolomite may be grouped into three zones, the shallow, the middle and the deep. The shallow zone is less than 600 meters in depth including the layer 1, layer 2 and layer 3 with a total thickness of 203 m; the middle zone includes the layer 4, layer 5 and layer 6 with a total thickness of 79 meters and occurs in a range of 600~1 000 m in depth; the deep zone includes the layer 7, 155 m in thickness buried underground more than 1000 meters in depth. The geochemical characteristics of major and trace elements of the seven layers of dolomite are studied in this paper, while diagenetic environment and genetic model discussed based on the newly acquired geochemical data combined with previous research results. Dolomite in the well Xike 1 was far beyond the affection of terrigenous materials, high content of SiO2 may come from the volcanic activities surrounding the islands. It is evidenced that the dolomitization in the Xisha area happened in an oxidation diagenetic environment, but the intensity of oxidation is different in the shallow, middle and deep zones. The paleosalinity of sea water was high when the dolomites formed, and there are slight differences between the three zones. The content of strontium in the dolomite of the well Xike 1 is generally low, as it was strongly leached by fresh water in an environment of reef platform with relatively shallow water. Comparatively, the influence of atmospheric fresh water was strongest in the shallow zone, followed by those in the middle and deep zones. The diagenesis of dolomite in the Xisha Islands is influenced by many factors, such as high palaeosalinity seawater, atmospheric fresh water and water reflux infiltration.

  • 加载中
  • [1] MACHEL H G. Concepts and models of dolomitization:a critical reappraisal[J]. Geological Society of London Special Publications,2004,235(1):7-63. doi: 10.1144/GSL.SP.2004.235.01.02

    CrossRef Google Scholar

    [2] SUN S Q. Dolomite reservoirs:porosity evolution and reservoir characterisics[J]. AAPG Bulletin,1995,79(2):186-204.

    Google Scholar

    [3] SUN Q L,MA Y B,ZHAO Q,et al. Different reef carbonate diagenesis and its influential factors,northern South China Sea[J]. Natural Gas Geoscience,2008,19(5):665-672.

    Google Scholar

    [4] 柴妮娜. 礁型油气藏的原油地球化学特征与油水界面研究: 以珠江口盆地流花11-1油田为例[D]. 武汉: 长江大学, 2014.

    Google Scholar

    [5] 刘宝明,夏斌,金庆焕,等. 南海盆地演化及碳酸盐岩油气勘探[J]. 海相油气地质,2003,8(1/2):10-16.

    Google Scholar

    [6] 曹佳琪,张道军,翟世奎,等. 西沙岛礁白云岩化特征与成因模式分析[J]. 海洋学报,2016,11(38):125-139.

    Google Scholar

    [7] WIGNALL P B,TWITCHETT R J. Oceanic anoxia and the End Permian Mass Extinction[J]. Science,1996,272(5265):1155-1158. doi: 10.1126/science.272.5265.1155

    CrossRef Google Scholar

    [8] YANG X M , BAS M. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis[J]. Lithos,2004,72(1/2):97-116.

    Google Scholar

    [9] 修淳,罗威,杨红军,等. 西沙石岛西科1井生物礁碳酸盐岩地球化学特征[J]. 地球科学(中国地质大学报),2015,40(4):648-652.

    Google Scholar

    [10] 乔培军,朱伟林,邵磊,等. 西沙群岛西科1井碳酸盐岩稳定同位素地层学[J]. 地球科学(中国地质大学报),2015,40(4):726-732.

    Google Scholar

    [11] 魏喜,贾承造,孟卫工. 西沙群岛西琛1井碳酸盐岩白云石化特征及成因机制[J]. 吉林大学学报,2008,38(2):217-224.

    Google Scholar

    [12] 王振峰,时志强,张道军,等. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因[J]. 地球科学(中国地质大学学报),2015,40(4):633-644.

    Google Scholar

    [13] 王崇友,何希贤,裘松余. 西沙群岛西永一井碳酸盐岩地层与微体古生物的初步研究[J]. 石油实验地质,1979,7(1):23-32.

    Google Scholar

    [14] 朱伟林,王振峰,米立军,等. 南海西沙西科1井层序地层格架与礁生长单元特征[J]. 地球科学(中国地质大学学报),2015,40(4):677-687.

    Google Scholar

    [15] 何起祥,张明书. 西沙群岛新第三纪白云岩的成因与意义[J]. 海洋地质与第四纪地质,1990,10(2):45-55.

    Google Scholar

    [16] 魏喜,祝永军,许红,等. 西沙群岛新近纪白云岩形成条件的探讨:C、O同位素和流体包裹体证据[J]. 岩石学报,2006,22(9):2394-2404. doi: 10.3321/j.issn:1000-0569.2006.09.016

    CrossRef Google Scholar

    [17] 刘昭蜀, 等. 南海地质[M]. 北京: 科学出版社, 2002: 1-502.

    Google Scholar

    [18] 吕炳全,徐国强,王红罡,等. 南海新生代碳酸盐台地淹没事件记录的海底扩张[J]. 地质科学,2002,37(4):405-414.

    Google Scholar

    [19] 吕修祥,金之钧. 碳酸盐岩油气田分布规律[J]. 石油学报,2000(3):8-12,107. doi: 10.3321/j.issn:0253-2697.2000.03.002

    CrossRef Google Scholar

    [20] 吕彩丽,姚永坚,吴时国,等. 南沙海区万安盆地中新世碳酸盐台地的地震响应与沉积特征[J]. 地球科学,2011(5):931-938.

    Google Scholar

    [21] XU H,JI Z P,LI S Y,et al. Zircon SHRIMP U-Pb dating of the Neogene coral reefs,Xisha Islands,South China Sea:implications for tectonic evolution[J]. China Geology,2018,1(1):49-60. doi: 10.31035/cg2018007

    CrossRef Google Scholar

    [22] 黄海波,丘学林,胥颐,等. 利用远震接收函数方法研究南海西沙群岛下方地壳结构[J]. 地球物理学报,2011,54(11):2788-2798. doi: 10.3969/j.issn.0001-5733.2011.11.009

    CrossRef Google Scholar

    [23] 徐国强,吕炳全,王红罡. 新生代南海北部碳酸盐岩台地的淹没事件研究[J]. 同济大学学报,2002,30(1):35-40.

    Google Scholar

    [24] 罗威,张道军,刘新宇,等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志,2018,42(4):485-498.

    Google Scholar

    [25] 杨虎, 钟波, 刘琼荪. 应用数理统计[M]. 北京: 清华大学出版社, 2006: 1-202.

    Google Scholar

    [26] TUREKIAN K K,WEDEPOHL K H. Distribution of the elements in some major unites of the Earth’s Crust[J]. GSA Bulletin,1961,72(2):175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    CrossRef Google Scholar

    [27] CALVERT S E,PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:implication for the geological record[J]. Marine Geology,1993,113:76-88.

    Google Scholar

    [28] HILD E,BRUMSACK H J. Major and minor element geochemistry of lower Aptian sediments from the NW German Basin(core Hohenegglesen KB 40)[J]. Cretaceous Research,1998,19:615-633. doi: 10.1006/cres.1998.0122

    CrossRef Google Scholar

    [29] WEBB G E,KAMBER B S. Rare earth elements in Holocene reefal microbialites:a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta,2000,64(9):1557-1565. doi: 10.1016/S0016-7037(99)00400-7

    CrossRef Google Scholar

    [30] NOTHDURFT L D,WEBB G E,KAMBER B S. Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australia:confirmation of a seawater REE proxy in ancient limestones[J]. Geochim Cosmochim Acta,2004,68:263-283. doi: 10.1016/S0016-7037(03)00422-8

    CrossRef Google Scholar

    [31] LING H F,CHEN X,LI D,et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area. South China:implications for oxygenation of coeval shallow seawater[J]. Precambrian Research,2013,225:110-127. doi: 10.1016/j.precamres.2011.10.011

    CrossRef Google Scholar

    [32] 陈雅丽,储雪蕾,张兴亮,等. 陕南镇巴地区灯影组白云岩的碳、硫同位素和微量元素指示:埃迪卡拉纪末期浅海的氧化还原环境[J]. 中国科学:地球科学,2015,45(7):963-981.

    Google Scholar

    [33] 吴世敏,周蒂,丘学林. 南海北部陆缘的构造属性问题[J]. 高校地质学报,2001,7(4):419-426. doi: 10.3969/j.issn.1006-7493.2001.04.006

    CrossRef Google Scholar

    [34] 冯英辞,彦文欢,姚衍桃,等. 西沙群岛礁区的地质构造及其活动性分析[J]. 热带海洋学报,2015,34(3):48-53. doi: 10.3969/j.issn.1009-5470.2015.03.006

    CrossRef Google Scholar

    [35] 许红,张金川,蔡峰. 西沙群岛中新世生物礁矿物相研究及其意义[J]. 海洋地质与第四纪地质,1994,14(4):15-23.

    Google Scholar

    [36] 赵强,许红,吴时国,等. 西沙石岛风成碳酸盐沉积的早期成岩作用[J]. 沉积学报,2013,31(2):220-236.

    Google Scholar

    [37] TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J]. Chemical Geology,2006,232:12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [38] RIMMER S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales,central Appalachian Basin(USA)[J]. Chemical Geology,2004,206:373-391. doi: 10.1016/j.chemgeo.2003.12.029

    CrossRef Google Scholar

    [39] EMERSON S R,HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry,1991,34:177-196. doi: 10.1016/0304-4203(91)90002-E

    CrossRef Google Scholar

    [40] 严德天,陈代钊,王清晨,等. 扬子地区奥陶系-志留系界限附近地球化学研究[J]. 中国科学:地球科学,2009,39(3):285-299.

    Google Scholar

    [41] KIMURA H,WATANABE Y. Ocean anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29:995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

    CrossRef Google Scholar

    [42] 姚春彦,马东升,丁海峰,等. 新疆阿克苏地区早寒武世碳酸盐岩沉积环境:微量元素和碳同位素证据[J]. 地球化学,2011,40(1):64-71.

    Google Scholar

    [43] PIPER D Z. Seawater as the source of minor elements in black shales,phosphorites,and other sedimentary rocks[J]. Chemical Geology,1994,114(1/2):95-114.

    Google Scholar

    [44] CRUSIUS J,CALVERT S,PEDERSEN T,et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic,sbuoxic and anoxic conditions of deposition[J]. Earth and Planetary Science Letters,1996,145(1):65-78.

    Google Scholar

    [45] JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.

    Google Scholar

    [46] DILL H. Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst(Northern Bavaria-Federal Republic of Germany)[J]. Economic Geology,1986,81(4):889-903. doi: 10.2113/gsecongeo.81.4.889

    CrossRef Google Scholar

    [47] DEGENS E T,WILLIAMS E G,KEITH M L. Application of geochemical criteria [Pennsylvania],Part 2 of environmental studies of carboniferous sediments[J]. Journal of Immunology,1958,141(9):3197-202.

    Google Scholar

    [48] 王益友,郭文莹,张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报(自然科学版),1979(2):54-63.

    Google Scholar

    [49] 朱丽霞,谭富文,陈明,等. 羌塘盆地那底岗日地区上侏罗统—下白垩统碳酸盐岩微量元素与古环境[J]. 成都理工大学学报(自然科学版),2011,38(5):549-556.

    Google Scholar

    [50] 李进龙,陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率,2003,10(5):1-3. doi: 10.3969/j.issn.1009-9603.2003.05.001

    CrossRef Google Scholar

    [51] BRAND U,VEIZER J. Chemical diagenesis of a multicomponent carbonate system-1:trace elements[J]. Journal of Sedimentary Research,1980,50(4):1219-1236.

    Google Scholar

    [52] 王利超,胡文瑄,王小林,等. 白云岩化过程中锶含量变化及锶同位素分馏特征与意义[J]. 石油与天然气地质,2016,37(4):465-472.

    Google Scholar

    [53] VEIZER J. Trace elements and isotopes in sedimentary carbonates[J]. Reviews in Mineralogy and Geochemistry,1983,11(1):265-299.

    Google Scholar

    [54] 许红,蔡峰,王玉净,等. 西沙中新世生物礁演化与藻类的造礁作用[J]. 科学通报,1999,44(13):1435.

    Google Scholar

    [55] 陆钧,陈木宏. 新生代主要全球气候事件研究进展[J]. 热带海洋学报,2006,25(6):72-79. doi: 10.3969/j.issn.1009-5470.2006.06.013

    CrossRef Google Scholar

    [56] 胡修棉,王成善. 100 Ma以来若干重大地质事件与全球气候变化[J]. 大自然探索,1999,18(67):53-58.

    Google Scholar

    [57] 安芷生,王苏民,吴锡浩,等. 中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J]. 中国科学(D辑),1998,28(6):481-490.

    Google Scholar

    [58] 张建勇,郭庆新,寿建峰,等. 新近纪海平面变化对白云石化的控制及对古老层系白云岩成因的启示[J]. 海相油气地质,2013,18(4):46-52. doi: 10.3969/j.issn.1672-9854.2013.04.007

    CrossRef Google Scholar

    [59] 邵龙义,何宏,彭苏萍,等. 塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J]. 古地理学报,2002,4(2):19-30. doi: 10.3969/j.issn.1671-1505.2002.02.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(8)

Article Metrics

Article views(1672) PDF downloads(137) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint