2021 Vol. 37, No. 6
Article Contents

MA Xiao, XU Hong, FU Heping, SHENG Jiangyuan. RESEARCH PROGRESS OF MARINE REEF-BUILDING HALIMEDA AND HALIMEDA FROM SHIDAO OF XISHA ISLANDS[J]. Marine Geology Frontiers, 2021, 37(6): 77-83. doi: 10.16028/j.1009-2722.2020.184
Citation: MA Xiao, XU Hong, FU Heping, SHENG Jiangyuan. RESEARCH PROGRESS OF MARINE REEF-BUILDING HALIMEDA AND HALIMEDA FROM SHIDAO OF XISHA ISLANDS[J]. Marine Geology Frontiers, 2021, 37(6): 77-83. doi: 10.16028/j.1009-2722.2020.184

RESEARCH PROGRESS OF MARINE REEF-BUILDING HALIMEDA AND HALIMEDA FROM SHIDAO OF XISHA ISLANDS

More Information
  • Halimeda is a kind of marine calcareous green algae widely growing in the tropical shallow sea of the world. It belongs to the genus of Codiaceae of Chlorophyta according to the biological classification. In addition to its important contribution to the diversity of ecosystem, Halimeda is also an important sediment producer among four major reef-building algae prevailed in various tropical marine environments. In this paper, a thorough review is devoted to the research history of Halimeda, including its depositional characteristics, its contribution to the sedimentation in tropical environment, calcification models, and the influence of ocean acidification onto the sediments. The Halimeda, as the major component of reef deposits at Shidao, the Xuande Atoll of the Xisha Islands is selected as the case of this research. Samples of different species of Halimeda are analyzed under microscope to estimate their carbonate productivity. Finally, the problems existing in the current research of Halimeda are discussed, and suggestions put forward for future researches.

  • 加载中
  • [1] FREILE D,MILLIMAN J D,HILLIS L. Leeward bank margin Halimeda meadows and draperies and their sedimentary importance on the western Great Bahama Bank slope[J]. Coral Reefs,1995,14(1):27-33. doi: 10.1007/BF00304068

    CrossRef Google Scholar

    [2] REES S A,OPDYKE B N,WILSON P A,et al. Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef,Australia[J]. Coral Reefs,2007,26(1):177-188. doi: 10.1007/s00338-006-0166-x

    CrossRef Google Scholar

    [3] GROUP B W. World Register of Marine Species[J]. 2013.

    Google Scholar

    [4] 沙庆安. 仙掌藻的文石质骨骼及其变化[J]. 海洋科学,1982(2):20-21.

    Google Scholar

    [5] VROOM P S,SMITH C M,COYER J A,et al. Field biology of Halimeda tuna (Bryopsidales,Chlorophyta) across a depth gradient:comparative growth,survivorship,recruitment,and reproduction[J]. Hydrobiologia,2003,501:149-166. doi: 10.1023/A:1026287816324

    CrossRef Google Scholar

    [6] HILLISCOLINVAUX L. Ecology and taxonomy of Halimeda:primary producer of coral reefs[J]. Advances in Marine Biology,1980,17:1-327.

    Google Scholar

    [7] WEFER G. Carbonate production by algae Halimeda,Penicillus and Padina[J]. Nature,1980,285:323-324. doi: 10.1038/285323a0

    CrossRef Google Scholar

    [8] MULTER H G. Growth rate,ultrastructure and sediment contribution of Halimeda incrassata and Halimeda monile,Nonsuch and Falmouth Bays,Antigua,W. I.[J]. Coral Reefs,1988,6(3):179-186.

    Google Scholar

    [9] TUSSENBROEK B I V,DIJK J K V. Spatial and temporal variability in biomass and production of psammophytic Halimeda incrassata (Bryopsidales,Chlorophyta) in a Caribbean reef lagoon[J]. Journal of Phycology,2010,43(1):69-77.

    Google Scholar

    [10] MILLIMAN J D. Recent sedimentary carbonates, part 1. Marine[M]. Heidelberg: Springer, 1974: 1-365.

    Google Scholar

    [11] DREW E A. Halimeda biomass,growth rates and sediment generation on reefs in the central Great Barrier Reef Province[J]. Coral Reefs,1983,2(2):101-110. doi: 10.1007/BF02395280

    CrossRef Google Scholar

    [12] JOHNS H D,MOORE C H. Reef to basin sediment transport using Halimeda as a sediment tracer,Grand Cayman Island,West Indies[J]. Coral Reefs,1988,6(3/4):187-193.

    Google Scholar

    [13] MARSHALL J F. Halimeda bioherms of the northern Great Barrier Reef[J]. Coral Reefs,1988:6.

    Google Scholar

    [14] MILLIMAN J D,DROXLER A W. Neritic and pelagic carbonate sedimentation in the marine environment:ignorance is not bliss[J]. Geologische Rundschau,1996,85(3):496-504. doi: 10.1007/BF02369004

    CrossRef Google Scholar

    [15] WIMAN S K. ,MCKENDREE W G. Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key,Florida[J]. Journal of Sedimentary Petrology,1975,45(2):415-421.

    Google Scholar

    [16] PAYRI C E. Halimeda contribution to organic and inorganic production in a Tahitian reef system[J]. Coral Reefs,1988,6(3):251-262.

    Google Scholar

    [17] JINENDRADASA S,EKARATNE S. Composition and monthly variation of fauna inhabiting reef-associated Halimeda[J]. Proc 9th Int Coral Reef Symp,2002,2:1059-1063.

    Google Scholar

    [18] MULTER H G, CLAVIJO I. Halimeda investigations: progress and problems[R], NOAA/RSMAS, 2004.

    Google Scholar

    [19] ROBLES F R. Carbonate Sands of Isla Perez,Alacran Reef Complex,Yucatán[J]. The Journal of Geology,1964,72(3):255-292. doi: 10.1086/626986

    CrossRef Google Scholar

    [20] NEUMANN L. Lime mud deposition and calcareous algae in the bight of Abaco,Bahamas:a budget[J]. Journal of Sedimentary Research,1975,45(4):763-786.

    Google Scholar

    [21] ROBERTS H H,PHIPPS C V,EFFENDI L. Halimeda bioherms of the eastern Java Sea,Indonesia[J]. Geology,1987,15(4):371-374. doi: 10.1130/0091-7613(1987)15<371:HBOTEJ>2.0.CO;2

    CrossRef Google Scholar

    [22] DREW E A,ABEL K M. Studies on Halimeda. I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province[J]. Coral Reefs,1988,6(3):195-205.

    Google Scholar

    [23] HINE A C,HALLOCK P,HARRIS M W,et al. Halimeda bioherms along an open seaway:Miskito Channel,Nicaraguan Rise,SW Caribbean Sea[J]. Coral Reefs,1988,6(3/4):173-178.

    Google Scholar

    [24] ORME G R,SALAMA M S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province[J]. Coral Reefs,1988,6:131-137. doi: 10.1007/BF00302009

    CrossRef Google Scholar

    [25] PHIPPS C V G,ROBERTS H H. Seismic characteristics and accretion history of Halimeda bioherms on Kalukalukuang Bank,eastern Java Sea (Indonesia)[J]. Coral Reefs,1988,6(3/4):149-159.

    Google Scholar

    [26] RAO V P,VEERAYYA M,NAIR R R,et al. Late Quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India[J]. Marine Geology,1994,121(3/4):293-315.

    Google Scholar

    [27] HILLIS L. Coralgal reefs from a calcareous green alga perspective, and a first carbonate budget[C]//Proceedings of the 8th Int. Coral Reef Sym. 1997.

    Google Scholar

    [28] POMAR L, KENDALL C G. Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In: Lukasik J, Simo JA (eds) Controls on carbonate platform and reef development.[M]. SEPM Sepcial Publication, 2008, 89: 187-216.

    Google Scholar

    [29] HILLIS L W. The calcareous reef alga Halimeda (Chlorophyta,Byropsidales):a cretaceous genus that diversified in the Cenozoic[J]. Palaeogeography Palaeoclimatology Palaeoecology,2001,166(1/2):89-100.

    Google Scholar

    [30] KLEYPAS J A, FEELY R A, FABRY V J, et al. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research[M]. NSF, NOAA, USGS, 2006.

    Google Scholar

    [31] ROBBINS L L,KNORR P O,HALLOCK P. Response of Halimeda to ocean acidification:field and laboratory evidence[J]. Biogeosciences Discussions,2009,6:4895.

    Google Scholar

    [32] RIES J B,COHEN A L,MCCORKLE D C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification[J]. Geology,2009,37(12):1131-1134. doi: 10.1130/G30210A.1

    CrossRef Google Scholar

    [33] RIES J B. Skeletal mineralogy in a high-CO2 world[J]. Journal of Experimental Marine Biology and Ecology,2011,403(1/2):54-64.

    Google Scholar

    [34] SINUTOK S,HILL R,DOBLIN M A,et al. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers[J]. Limnology and Oceanography,2011,56(4):1200-1212. doi: 10.4319/lo.2011.56.4.1200

    CrossRef Google Scholar

    [35] HILL R,SINUTOK S,DOBLIN M A,et al. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming[J]. Coral Reefs,2012,31(4):1201-1213. doi: 10.1007/s00338-012-0952-6

    CrossRef Google Scholar

    [36] PRICE N N,HAMILTON S L,TOOTELL J S,et al. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda[J]. Marine Ecology Progress,2011,440:67-78. doi: 10.3354/meps09309

    CrossRef Google Scholar

    [37] HOFMANN L C,STRAUB S,BISCHOF K. Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels[J]. Marine Ecology Progress Series,2012,464(464):89-105.

    Google Scholar

    [38] 余克服,赵焕庭. 南沙群岛珊瑚礁区仙掌藻的现代沉积特征[J]. 沉积学报,1998,16(3):20-24.

    Google Scholar

    [39] 蔡峰,王玉净. 西沙—南海北部晚第三纪生物礁的比较沉积学研究[J]. 沉积学报,1996,14(4):61-69.

    Google Scholar

    [40] 徐智广,李美真,霍传林,等. 高浓度CO2引起的海水酸化对小珊瑚藻光合作用和钙化作用的影响[J]. 生态学报,2012,32(3):699-705.

    Google Scholar

    [41] 韦章良,莫嘉豪,胡群菊,等. 不同光照强度下仙掌藻(Halimeda opuntia)对海洋酸化的生理响应[J]. 海洋通报,2019,38(5):574-584. doi: 10.11840/j.issn.1001-6392.2019.05.012

    CrossRef Google Scholar

    [42] TEICHBERG M,FRICKE A,BISCHOF K. Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef[J]. Aquatic Botany,2013,104:25-33. doi: 10.1016/j.aquabot.2012.09.010

    CrossRef Google Scholar

    [43] 许红,赵新伟,EBERLI G P,等. 西沙群岛生物碳酸盐的成因和沉积:来自活体仙掌藻的证据[J]. 海洋学报(中文版),2015,34(4):62.

    Google Scholar

    [44] 许红,朱玉瑞,EBERLI G P,等. 西沙中新世化石仙掌藻礁矿物岩石孔渗层特征及成因模式[J]. 海洋学报(中文版),2015,34(4):74.

    Google Scholar

    [45] MACINTYRE D L,REID W D,MCKENZIE D C. Delayed Muscle Soreness[J]. Sports Medicine,1995,20(1):24-40. doi: 10.2165/00007256-199520010-00003

    CrossRef Google Scholar

    [46] WIZEMANN A,MEYER F W,WESTPHAL H. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux)[J]. Coral Reefs,2014.

    Google Scholar

    [47] BHM E,TSCHOMAKOV M. Frühe Merkmale einer vitalen Reaktion—Untersuchungen an Schnittverletzungen der Rattenhaut[J]. Zeitschrift Für Rechtsmedizin,1973,72(2):111-118.

    Google Scholar

    [48] NAKAHARA H, BEVELANDER G. The formation of calcium carbonate crystals in Halimeda incrassata with special reference to the role of the organic matrix[J]. 1978.

    Google Scholar

    [49] WEISS I M,FRÉDÉRIC M. The role of enzymes in biomineralization processes[J]. Metal Ions in Life Sciences,2008:4.

    Google Scholar

    [50] FALINI G,REGGI M,FERMANI S,et al. Control of aragonite deposition in colonial corals by intra-skeletal macromolecules[J]. Journal of Structural Biology,2013,183(2):226-238. doi: 10.1016/j.jsb.2013.05.001

    CrossRef Google Scholar

    [51] SIMKISS K. The organic matrix of the oyster shell[J]. Comparative Biochemistry and Physiology,1965,16(4):427-435. doi: 10.1016/0010-406X(65)90307-5

    CrossRef Google Scholar

    [52] SIKES A. Regulation of Carbonate Calcification by Organic Matrix[J]. American Zoologist,1984,24(4):933-944. doi: 10.1093/icb/24.4.933

    CrossRef Google Scholar

    [53] SIMKISS K, WILBUR K M. Biomineralization[M]. San Diego, CA, USA: Academic Press, 1989.

    Google Scholar

    [54] MANN S. Biomineralization: principles and concepts in bioinorganic materials chemistry, vol. 5[M]. New York: Oxford University Press, 2001.

    Google Scholar

    [55] BONUCCI E. Main Suggested Calcification Mechanisms: Extracellular Matrix[M]//Biological Calcification. Berlin Heidelberg: Springer 2007.

    Google Scholar

    [56] CUIF J P,DAUPHIN Y,NEHRKE G,et al. Layered growth and crystallization in calcareous biominerals:impact of structural and chemical evidence on two major concepts in invertebrate biomineralization studies[J]. Minerals,2012,2:11-39. doi: 10.3390/min2010011

    CrossRef Google Scholar

    [57] BOROWITZKA M A,LARKUM A. Calcification in the green alga Halimeda:III. the sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification[J]. Journal of Experimental Botany,1976,27:879-893.

    Google Scholar

    [58] VERBRUGGEN H,KOOISTRA W H. Morphological characterization of lineages within the calcified tropical seaweed genus Halimeda (Bryopsidales,Chlorophyta)[J]. European Journal of Phycology,2004,39(2):213-228. doi: 10.1080/0967026042000202163

    CrossRef Google Scholar

    [59] YÑIGUEZ A T,MCMANUS J W,DEANGELIS D L. Allowing macroalgae growth forms to emerge:use of an agent-based model to understand the growth and spread of macroalgae in Florida coral reefs,with emphasis on Halimeda tuna[J]. Ecological Modelling,2008,216(1):60-74. doi: 10.1016/j.ecolmodel.2008.04.016

    CrossRef Google Scholar

    [60] BACH S D. Standing crop,growth and production of calcareous siphonales (Chlorophyta) in a south Florida lagoon[J]. Bulletin of Marine Science,1979,29(2):191-201.

    Google Scholar

    [61] GARRIGUE C. Biomass and production of two Halimeda species in the Southwest New-Caledonian lagoon[J]. Oceanologica Acta,1991,14(6).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1139) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint