Citation: | GUO Yang, HU Gaowei, LI Yanlong, CHEN Qiang, BU Qingtao, WAN Yizhao, MAO Peixiao, CHEN Jie, WANG Zihao. PROGRESS IN EXPERIMENTAL RESEARCH ON RESISTIVITY EVOLUTION OF HYDRATE BEARING SEDIMENTS[J]. Marine Geology Frontiers, 2021, 37(5): 1-13. doi: 10.16028/j.1009-2722.2020.138 |
Electrical resistivity is extremely sensitive to the composition and microstructure of hydrate-bearing sediments, and is often applied as a key parameter reflecting the evolution of physical properties during the formation and decomposition of hydrates. However, due to the complexity of influencing factors, the variation of resistivity with the formation and decomposition of CH4 hydrate is still unclear. Based on the research progress of resistivity experiment of hydrate-bearing sediments, the evolution of resistivity in the hydrate forming process in different systems, such as pure water, saline water and unsaturated water, is studied in this paper. The results show that in the sediments saturated by pure water, the hydrate develops gradually from contact mode to cementation mode; in the systems filled by saturated brine, hydrate occurs in a suspension mode and Ostwald maturation occurs; in the sediments with unsaturated water, hydrate occurrence changes from suspension mode to cementation mode. Based on the above analysis, a model of hydrate formation process is proposed by the authors, and the future development trend of experimental research on electrical characteristics is discussed. It is confident that the results have certain reference significance for hydrate electrical research.
[1] | SLOAN E D. Gas hydrates:review of physical/chemical properties[J]. Energy & fuels,1998,12(2):191-196. |
[2] | SLOAN E D, KOH C A. Clathrate hydrates of natural gases[M]. New York: CRC Press, 2007. |
[3] | KVENVOLDEN K A. Gas hydrate and humans[J]. Annals of the New York Academy of Sciences,2006,912(1):17-22. doi: 10.1111/j.1749-6632.2000.tb06755.x |
[4] | MASLIN M,OWEN M J,BETTS R,et al. Gas hydrates:past and future geohazard?[J]. Philosophical Transactions of the Royal Society A,2010,368(1919):2369-2393. doi: 10.1098/rsta.2010.0065 |
[5] | KVENVOLDEN K A, LORENSON T D. The global occurrence of natural gas hydrate[M]//Natural Gas Hydrates: Occurrence, Distribution and Detection. American Geophysical Union (AGU), 2001. |
[6] | BOSWELL R,COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science,2011,4(4):1206-1215. doi: 10.1039/C0EE00203H |
[7] | WALLMANN K,PINERO E,BURWICZ E,et al. The global inventory of methane hydrate in marine sediments:a theoretical approach[J]. Energies,2012,5(7):1-50. |
[8] | ARCHER D. Methane hydrate stability and anthropogenic climate change[J]. Biogeosciences,2007,4(4):521-544. doi: 10.5194/bg-4-521-2007 |
[9] | RUPPEL C D,KESSLEr J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics,2017,55(1):126-168. doi: 10.1002/2016RG000534 |
[10] | DICKENS G R. Rethinking the global carbon cycle with a large,dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters,2003,213(3):169-183. |
[11] | LIU T,LIU X W,ZHU T Y. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate[J]. Marine and Petroleum Geology,2020,112:104036. doi: 10.1016/j.marpetgeo.2019.104036 |
[12] | KUANG Y M,YANG L,LI Q P,et al. Physical characteristic analysis of unconsolidated sediments containing gas hydrate recovered from the Shenhu Area of the South China Sea[J]. Journal of Petroleum Science and Engineering,2019,181:106173. doi: 10.1016/j.petrol.2019.06.037 |
[13] | EDWARDS R N. On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole methods[J]. Geophysics,1997,62(1):63-74. doi: 10.1190/1.1444146 |
[14] | PERMYAKOV M E,MANCHENKO N A,DUCHKOV A D,et al. Laboratory modeling and measurement of the electrical resistivity of hydrate-bearing sand samples[J]. Russian Geology and Geophysics,2017,58(5):642-649. doi: 10.1016/j.rgg.2017.04.005 |
[15] | BÖRNER J H,HERDEGEN V,REPKE J U,et al. The impact of CO2 on the electrical properties of water bearing porous media-laboratory experiments with respect to carbon capture and storage[J]. Geophysical Prospecting,2013,61:446-460. doi: 10.1111/j.1365-2478.2012.01129.x |
[16] | 陈强,业渝光,孟庆国,等. 多孔介质中CO2水合物饱和度与阻抗关系模拟实验研究[J]. 天然气地球科学,2009,20(2):249-253. |
[17] | SPANGENBERG E,KULENKAMPFF J. Influence of methane hydrate content on electrical sediment properties[J]. Geophysical Research Letters,2006,33(24):1-5. |
[18] | CHONG Z R,KOH J W,LINGA P. Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments[J]. Energy,2017,137:518-529. doi: 10.1016/j.energy.2017.01.154 |
[19] | WAITE W F,SANTAMARINA J C,CORTES D D,et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics,2009,47(4):1-38. |
[20] | LU R,STERN L A,DU FRANE W L,et al. The effect of brine on the electrical properties of methane hydrate[J]. Journal of Geophysical Research:Solid Earth,2019,124(11):10877-10892. doi: 10.1029/2019JB018364 |
[21] | LEE J Y,SANTAMARINA J C,RUPPEL C. Parametric study of the physical properties of hydrate-bearing sand,silt,and clay sediments:electromagnetic properties[J]. Journal of Geophysical Research:Solid Earth,2010,115(B11):B11105. doi: 10.1029/2009JB006670 |
[22] | REN S R,LIU Y,LIU Y,et al. Acoustic velocity and electrical resistance of hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering,2010,70(1-2):52-56. doi: 10.1016/j.petrol.2009.09.001 |
[23] | 陈玉凤,李栋梁,梁德青,等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报,2013,34(3):507-512. doi: 10.7623/syxb201303012 |
[24] | 陈玉凤,吴能友,梁德青,等. 基于分形孔隙模型的含天然气水合物沉积物电阻率数值模拟[J]. 天然气工业,2018,38(11):128-134. doi: 10.3787/j.issn.1000-0976.2018.11.017 |
[25] | LIU H,GUO P,ZHAN S Y,et al. Experimental investigation into formation/dissociation characteristics of methane hydrate in consolidated sediments with resistance measurement[J]. Fuel,2018,234:985-995. doi: 10.1016/j.fuel.2018.07.101 |
[26] | DU FRANE W L,STERN L A,CONSTABLE S,et al. Electrical properties of methane hydrate+sediment mixtures[J]. Journal of Geophysical Research:Solid Earth,2015,120(7):4773-4783. doi: 10.1002/2015JB011940 |
[27] | LIM D,RO H,SEO Y,et al. Electrical Resistivity Measurements of Methane Hydrate during N2/CO2 Gas Exchange[J]. Energy & Fuels,2017,31(1):708-713. |
[28] | JUNG J,RYOU J E,AL-RAOUSH R I,et al. Effects of CH4-CO2 replacement in hydrate-bearing sediments on S-wave velocity and electrical resistivity[J]. Journal of Natural Gas Science and Engineering,2020,82:103506. doi: 10.1016/j.jngse.2020.103506 |
[29] | CHEN X,ESPINOZA D N,LUO J S,et al. Pore-scale evidence of ion exclusion during methane hydrate growth and evolution of hydrate pore-habit in sandy sediments[J]. Marine and Petroleum Geology,2020,117:104340. doi: 10.1016/j.marpetgeo.2020.104340 |
[30] | LI F G,SUN C Y,LI S L,et al. Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments[J]. Energy & Fuels,2012,26(10):6210-6217. |
[31] | 陈玉凤,周雪冰,梁德青,等. 沉积物中天然气水合物生成与分解过程的电阻率变化[J]. 天然气地球科学,2018,29(11):1672-1678. doi: 10.11764/j.issn.1672-1926.2018.08.017 |
[32] | 李淑霞,夏唏冉,郝永卯,等. 电阻率测试技术在沉积物-盐水-甲烷水合物体系中的应用[J]. 实验力学,2010,25(1):95-99. |
[33] | HELGERUD M B. Wave speeds in gas hydrate and sediments containing gas hydrate: a laboratory and modeling study[D]. Stanford: Stanford University, 2001. |
[34] | 陈强,刘昌岭,邢兰昌,等. 孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J]. 石油学报,2016,37(2):222-229. doi: 10.7623/syxb201602008 |
[35] | CHEN L T,LI N,SUN C Y,et al. Hydrate formation in sediments from free gas using a one-dimensional visual simulator[J]. Fuel,2017,197:298-309. doi: 10.1016/j.fuel.2017.02.034 |
[36] | ZHU Y H,ZHANG Y Q,WEN H J,et al. Gas hydrates in the Qilian Mountain permafrost,Qinghai,Northwest China[J]. Acta Geologica Sinica-English Edition,2010,84(1):1-10. doi: 10.1111/j.1755-6724.2010.00164.x |
[37] | WINTERS W,WALKER M,HUNTER R,et al. Physical properties of sediment from the Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):361-380. doi: 10.1016/j.marpetgeo.2010.01.008 |
[38] | SUN Y F,GOLDBERG D. Dielectric method of high-resolution gas hydrate estimation[J]. Geophysical Research Letters,2005,32(4):L04313. |
[39] | SHANKAR U,RIEDEL M. Gas hydrate saturation in the Krishna-Godavari Basin from P-wave velocity and electrical resistivity logs[J]. Marine and Petroleum Geology,2011,28(10):1768-1778. doi: 10.1016/j.marpetgeo.2010.09.008 |
[40] | OSHIMA M,SUZUKI K,YONEDA J,et al. Lithological properties of natural gas hydrate-bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin[J]. Marine and Petroleum Geology,2019,108:439-470. doi: 10.1016/j.marpetgeo.2019.01.015 |
[41] | RYU B J,COLLETT T S,RIEDEL M,et al. Scientific results of the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2)[J]. Marine and Petroleum Geology,2013,47:1-20. doi: 10.1016/j.marpetgeo.2013.07.007 |
[42] | 王秀娟,吴时国,刘学伟,等. 基于测井和地震资料的神狐海域天然气水合物资源量估算[J]. 地球物理学进展,2010,25(4):1288-1297. doi: 10.3969/j.issn.1004-2903.2010.04.017 |
[43] | FUJⅡ T, SAEKI T, KOBAYASHI T, et al. Resource assessment of methane hydrate in the eastern Nankai Trough, Japan[C]//6th International Conference on Gas Hydrates, Vancouver (Canada), 2008. |
[44] | HE J,LI X S,CHEN Z Y,et al. Study on methane hydrate distributions in laboratory samples by electrical resistance characteristics during hydrate formation[J]. Journal of Natural Gas Science and Engineering,2020:103385. |
[45] | BIRKEDAL K A, ERSLAND G, HAUGE L P Ø, et al. Electrical resistivity measurements of CH4 hydrate-bearing sandstone during formation[C]//7th International Conference on Gas Hydrates, Edinburgh (United Kingdom), 2011. |
[46] | 王英梅,吴青柏,蒲毅彬,等. 温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J]. 天然气地球科学,2012,23(1):19-25. |
[47] | STERN L A,KIRBY S H,Circone S,et al. Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice,and comparison to natural hydrates[J]. American Mineralogist,2004,89(8/9):1162-1175. doi: 10.2138/am-2004-8-902 |
[48] | 胡高伟,李承峰,业渝光,等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报,2014,57(5):1675-1682. doi: 10.6038/cjg20140530 |
[49] | YOU K,KNEAFSEY T J,FLEMINGS P B,et al. Salinity-buffered methane hydrate formation and dissociation in gas-rich systems[J]. Journal of Geophysical Research:Solid Earth,2015,120(2):643-661. doi: 10.1002/2014JB011190 |
[50] | 李小森,冯景春,李刚,等. 电阻率在天然气水合物三维生成及开采过程中的变化特性模拟实验[J]. 天然气工业,2013,33(7):18-23. doi: 10.3787/j.issn.1000-0976.2013.07.003 |
[51] | 周锡堂,樊栓狮,粱德青,等. 石英砂中甲烷水合物注热水分解实验[J]. 天然气工业,2007,27(9):11-14. doi: 10.3321/j.issn:1000-0976.2007.09.003 |
[52] | ZHOU X T,FAN S S,LIANG D Q,et al. Use of electrical resistance to detect the formation and decomposition of methane hydrate[J]. Journal of natural gas chemistry,2007,16(4):399-403. doi: 10.1016/S1003-9953(08)60011-0 |
[53] | 李栋梁,卢静生,梁德青. 祁连山冻土区天然气水合物形成对岩心电阻率及介电常数的影响[J]. 新能源进展,2016,4(3):179-183. doi: 10.3969/j.issn.2095-560X.2016.03.003 |
[54] | 唐叶叶. 祁连山冻土区孔隙型水合物储层岩石电性实验研究[D]. 北京: 中国地质大学 (北京), 2018. |
[55] | LI S X,XIA X R,X J,et al. Resistivity in formation and decomposition of natural gas hydrate in porous medium[J]. Chinese Journal of Chemical Engineering,2010,18(1):39-42. doi: 10.1016/S1004-9541(08)60320-1 |
[56] | LU R,STERN L A,DU FRANE W L,et al. Electrical conductivity of methane hydrate with pore fluids:new results from the lab[J]. Methane Hydrate News,2018,18:7-11. |
[57] | SAW V K,AHMAD I,MANDAL A,et al. Methane hydrate formation and dissociation in synthetic seawater[J]. Journal of natural gas chemistry,2012,21(6):625-632. doi: 10.1016/S1003-9953(11)60411-8 |
[58] | GAO J. Calorimetric determination of enthalpy of formation of natural gas hydrates[J]. Chinese Journal of Chemical Engineering,2003,11(3):276-279. |
[59] | WANG Q L,HAN D Y,WANG Z M,et al. Lattice Boltzmann modeling for hydrate formation in brine[J]. Chemical Engineering Journal,2019,366:133-140. doi: 10.1016/j.cej.2019.02.060 |
[60] | 陈玉凤,李栋梁,梁德青,等. 含天然气水合物的海底沉积物的电学特性实验[J]. 地球物理学进展,2013(2):1041-1047. doi: 10.6038/pg20130258 |
[61] | SPANGENBERG E,PRIEGNITZ M,HEESCHEN K,et al. Are laboratory-formed hydrate-bearing systems analogous to those in nature?[J]. Journal of Chemical & Engineering Data,2015,60(2):258-268. |
[62] | LI N,SUN Z F,SUN C Y,et al. Simulating natural hydrate formation and accumulation in sediments from dissolved methane using a large three-dimensional simulator[J]. Fuel,2018,216:612-620. doi: 10.1016/j.fuel.2017.11.112 |
[63] | CHEN X,ESPINOZA D N. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate[J]. Fuel,2018,214:614-622. doi: 10.1016/j.fuel.2017.11.065 |
[64] | HABER A,AKHFASH M,LOH C K,et al. Hydrate shell growth measured using NMR[J]. Langmuir,2015,31(32):8786-8794. doi: 10.1021/acs.langmuir.5b01688 |
[65] | JIN Y R,LI S X,YANG D Y. Experimental and theoretical quantification of the relationship between electrical resistivity and hydrate saturation in porous media[J]. Fuel,2020,269:117378. doi: 10.1016/j.fuel.2020.117378 |
[66] | TOHIDI B,ANDERSON R,CLENNELL M B,et al. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels[J]. Geology,2001,29(9):867-870. doi: 10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2 |
[67] | 李彦龙,孙海亮,孟庆国,等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业,2019,39(10):132-138. doi: 10.3787/j.issn.1000-0976.2019.10.017 |
[68] | 粟科华,孙长宇,李楠,等. 天然气水合物人工矿体高温分解模拟实验[J]. 天然气工业,2015,35(1):137-143. doi: 10.3787/j.issn.1000-0976.2015.01.020 |
[69] | 李淑霞,张孟琴,李杰. 不同水合物饱和度下注热水开采实验研究[J]. 实验力学,2012,27(4):448-453. |
[70] | SUNG W,KANG H C. Experimental investigation of production behaviors of methane hydrate saturated in porous rock[J]. Energy Sources,2003,25(8):845-856. doi: 10.1080/00908310390207873 |
[71] | JUNG J W,SANTAMARINA J C. CH4-CO2 replacement in hydrate-bearing sediments:a pore-scale study[J]. Geochemistry,Geophysics,Geosystems,2010,11(12):1-8. |
[72] | LEI L,SANTAMARINA J C. Physical properties of fine-grained sediments with segregated hydrate lenses[J]. Marine and Petroleum Geology,2019,109:899-911. doi: 10.1016/j.marpetgeo.2019.08.053 |
Resistance evolution characteristics in hydrate formation and decomposition processes at temperatures of 1, 3 and 6 ℃[25]
Influence of pressure on resistivity in consolidated sediments with saturated water[27-28]
Resistivity evolution characteristics in hydrate formation process with the different initial water saturation [30]
Resistance evolution characteristics in hydrate formation and decomposition processes with the different salinity of pore water[25]
Characteristics of resistivity evolution during the nucleation stage of hydrate in unsaturated pure water sediments[46]
Characteristics of resistivity evolution during the formation of unsaturated pure water hydrate[51]
Schematic diagram for hydrate formation in brine water[59]
Characteristics of electrical resistivity evolution in salt drainage stage during hydrate formation[22, 60]
Characteristics of resistivity evolution during the nucleation stage of hydrate in unsaturated brine sediments[35]
Characteristics of resistivity evolution during hydrate growth stage in saturated brine sediments[31]
Characteristics of resistivity evolution during the growth stage of hydrate in unsaturated brine sediments[49]
Characteristics of resistivity evolution in hydrate replacement process[27-28]
Model for the formation stage of saturated pure water hydrate
Model for the formation stage of unsaturated pure water hydrate
Model for formation stage of saturated brine hydrate
Model for formation stage of unsaturated brine hydrate