2022 Vol. 37, No. 2
Article Contents

WANG Zihao, WAN Yizhao, LIU Lele, BU Qingtao, WANG Zhuangzhuang, MAO Peixiao, HU Gaowei. Research advances in gas-water relative permeability of hydrate-bearing sediments[J]. Marine Geology Frontiers, 2022, 38(2): 14-29. doi: 10.16028/j.1009-2722.2020.124
Citation: WANG Zihao, WAN Yizhao, LIU Lele, BU Qingtao, WANG Zhuangzhuang, MAO Peixiao, HU Gaowei. Research advances in gas-water relative permeability of hydrate-bearing sediments[J]. Marine Geology Frontiers, 2022, 38(2): 14-29. doi: 10.16028/j.1009-2722.2020.124

Research advances in gas-water relative permeability of hydrate-bearing sediments

More Information
  • Gas-water relative permeability is a key parameter in the trial production of natural gas hydrate. Measurement and evaluation of the parameter of the hydrate reservoir is essential for enhancing gas production efficiency and realizing the industrialization of natural gas hydrate production. This paper provides a review on the research progress in the relative permeability of hydrate-bearing sediments. It is summarized from three aspects, i.e. experimental measurement, numerical simulation, and model establishment. It is found that the unsteady-state method is widely employed in the permeability measurements for hydrate-bearing sediment. The relative permeability curve suggests that higher hydrate saturation will cause lower water relative permeability at a given water saturation, but the variation of gas relative permeability is complicated; the pore-structure of the sediment changes along with the hydrate saturation, which further results in the changes of gas-water relative permeability. Numerical simulation mostly calculates relative permeability with a pore network model or a water retention curve to explore hydrate growth habits and pore-filling characteristics and the effect of various factors such as particle size, hydrate saturation, wettability, and interface tension and their influence on gas-water relative permeability. A newly developed relative permeability model for hydrate-bearing media considering the influences of the capillarity and pore-size distribution (referred to as RPHCP) is introduced in this work, which shows obvious advantages in simulating the multi-phase flow of hydrate-bearing sediments and explaining the changes of hydrate saturation compared to other models. RPHCP model is recommended to overcome the defect of the high cost of computation of RPHCP model to achieve precise modeling of multiphase flow in hydrate-bearing sediments.

  • 加载中
  • [1] SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature,2003,426(6964):353-359. doi: 10.1038/nature02135

    CrossRef Google Scholar

    [2] KLEINBERG R L. Exploration strategy for economically significant accumulations of marine gas hydrate[J]. Geological Society,London,Special Publications,2009,319(1):21-28. doi: 10.1144/SP319.3

    CrossRef Google Scholar

    [3] WAITE W F,SANTAMARINA J C,CORTES D D,et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics,2009,47(4):RG4003.

    Google Scholar

    [4] DEMIRBAS A. Methane hydrates as potential energy resource:Part 2 – methane production processes from gas hydrates[J]. Energy Conversion and Management,2010,51(7):1562-1571. doi: 10.1016/j.enconman.2010.02.014

    CrossRef Google Scholar

    [5] GABITTO J F,TSOURIS C. Physical properties of gas hydrates:a review[J]. Journal of Thermodynamics,2010,2010:1-12.

    Google Scholar

    [6] BOSWELL R,YONEDA J,WAITE W F. India National Gas Hydrate Program Expedition 02 summary of scientific results:evaluation of natural gas-hydrate-bearing pressure cores[J]. Marine and Petroleum Geology,2019,108:143-153. doi: 10.1016/j.marpetgeo.2018.10.020

    CrossRef Google Scholar

    [7] YOO D G,KANG N K,YI B Y,et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin,East Sea[J]. Marine and Petroleum Geology,2013,47:236-247. doi: 10.1016/j.marpetgeo.2013.07.001

    CrossRef Google Scholar

    [8] SONG Y C,YANG L,ZHAO J F,et al. The status of natural gas hydrate research in China:a review[J]. Renewable and Sustainable Energy Reviews,2014,31:778-791. doi: 10.1016/j.rser.2013.12.025

    CrossRef Google Scholar

    [9] YONEDA J,MASUI A,KONNO Y,et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology,2015,66:471-486. doi: 10.1016/j.marpetgeo.2015.02.029

    CrossRef Google Scholar

    [10] KURIHARA M, SATO A, FUNATSU K, et al. Analysis of Production Data for 2007/2008 Mallik gas hydrate production tests in Canada[C]//Society of Petroleum Engineers, Beijing: 2010.

    Google Scholar

    [11] HUNTER R B,COLLETT T S,BOSWELL R,et al. Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope:overview of scientific and technical program[J]. Marine and Petroleum Geology,2011,28(2):295-310. doi: 10.1016/j.marpetgeo.2010.02.015

    CrossRef Google Scholar

    [12] KONNO Y,FUJII T,SATO A,et al. Key findings of the world’s first offshore methane hydrate production test off the coast of Japan:toward future commercial production[J]. Energy & Fuels,2017,31(3):2607-2616.

    Google Scholar

    [13] YAMAMOTO K,WANG X X,TAMAKI M,et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances,2019,9(45):25987-26013. doi: 10.1039/C9RA00755E

    CrossRef Google Scholar

    [14] CHEN L,FENG Y C,OKAJIMA J,et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu,South China Sea[J]. Journal of Natural Gas Science and Engineering,2018,53:55-66. doi: 10.1016/j.jngse.2018.02.029

    CrossRef Google Scholar

    [15] 叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557-568.

    Google Scholar

    [16] 吴能友,李彦龙,万义钊,等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业,2020,40(8):100-115. doi: 10.3787/j.issn.1000-0976.2020.08.008

    CrossRef Google Scholar

    [17] 何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):1-14.

    Google Scholar

    [18] 陈强,胡高伟,李彦龙,等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿,2020,36(9):44-55.

    Google Scholar

    [19] 刘昌岭,郝锡荦,孟庆国,等. 气体水合物基础特性研究进展[J]. 海洋地质前沿,2020,36(9):1-10.

    Google Scholar

    [20] 张永超,刘昌岭,吴能友,等. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿,2020,36(9):23-33.

    Google Scholar

    [21] 王屹,李小森. 天然气水合物开采技术研究进展[J]. 新能源进展,2013,1(1):69-79. doi: 10.3969/j.issn.2095-560X.2013.01.007

    CrossRef Google Scholar

    [22] 王文博,崔伟,肖加奇. 天然气水合物降压开采中渗透率对低压传递的影响[J]. 节能,2019,38(12):96-101.

    Google Scholar

    [23] WAN Y Z,WU N Y,HU G W,et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China Sea[J]. Natural Gas Industry B,2018,5(6):631-643. doi: 10.1016/j.ngib.2018.11.012

    CrossRef Google Scholar

    [24] LI Y L,LIU L L,JIN Y R,et al. Characterization and development of marine natural gas hydrate reservoirs in Clayey-silt sediments:a review and discussion[J]. Advances in Geo-Energy Research,2021,5(1):75-86. doi: 10.46690/ager.2021.01.08

    CrossRef Google Scholar

    [25] SUN Y H,LU H F,LU C,et al. Hydrate dissociation induced by gas diffusion from pore water to drilling fluid in a cold wellbore[J]. Advances in Geo-Energy Research,2018,2(4):410-417. doi: 10.26804/ager.2018.04.06

    CrossRef Google Scholar

    [26] 蔡建超,夏宇轩,徐赛,等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报,2020,52(1):208-223.

    Google Scholar

    [27] 肖罗坤,董艳辉,李守定,等. 孔隙介质中天然气水合物相变过程的影响因素研究进展[J]. 工程地质学报,2021,29(1):183-196.

    Google Scholar

    [28] 曾家明,李栋梁,梁德青,等. 天然气水合物储层渗透率研究进展[J]. 新能源进展,2021,9(1):25-34.

    Google Scholar

    [29] 刘永革, 侯健, 夏志增, 等. 一种不同水合物饱和度状态下气水相对渗透率的单向流动测定方法[P]. 2016–05–04.

    Google Scholar

    [30] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展,2012,27(7):733-746.

    Google Scholar

    [31] 孙可明,翟诚,辛利伟,等. 不同饱和度水合物沉积物的三轴加载渗透率试验[J]. 天然气工业,2017,37(12):61-67. doi: 10.3787/j.issn.1000-0976.2017.12.009

    CrossRef Google Scholar

    [32] 刘乐乐,张宏源,刘昌岭,等. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用[J]. 海洋地质与第四纪地质,2017,37(5):159-165.

    Google Scholar

    [33] 张永超,刘昌岭,刘乐乐,等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质,2021,41(3):193-202.

    Google Scholar

    [34] 李承峰,刘乐乐,孙建业,等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿,2020,36(9):68-72.

    Google Scholar

    [35] LAI J,WANG G W,WANG Z Y,et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews,2018,177:436-457. doi: 10.1016/j.earscirev.2017.12.003

    CrossRef Google Scholar

    [36] REN X W,ZHAO Y,DENG Q L,et al. A relation of hydraulic conductivity : void ratio for soils based on Kozeny-Carman equation[J]. Engineering Geology,2016,213:89-97. doi: 10.1016/j.enggeo.2016.08.017

    CrossRef Google Scholar

    [37] REN X W,SANTAMARINA J C. The hydraulic conductivity of sediments:a pore size Perspective[J]. Engineering Geology,2018,233:48-54. doi: 10.1016/j.enggeo.2017.11.022

    CrossRef Google Scholar

    [38] MINAGAWA H, NISHIKAWA Y, IKEDA I, et al. Measurement of methane hydrate sediment permeability using several chemical solutions as Inhibitors[C]//International Society of Offshore and Polar Engineers (ISOPE), Lisbon: 2007.

    Google Scholar

    [39] MORIDIS G J, KOWALSKY M B, PRUESS K. TOUGH+Hydrate v1.0 user’s manual: a code for the simulation of system behavior in hydrate-bearing geologic media: LBNL-149E, 927149[C]//Lawrence Berkeley National Laboratory, California: 2008: LBNL-149E, 927149.

    Google Scholar

    [40] KNEAFSEY T J,SEOL Y,GUPTA A,et al. Permeability of Laboratory-formed methane-hydrate-bearing sand:Measurements and observations using X-ray computed Tomography[J]. SPE Journal,2011,16(1):78-94. doi: 10.2118/139525-PA

    CrossRef Google Scholar

    [41] LI C H,ZHAO Q,XU H J,et al. Relation between relative permeability and hydrate saturation in Shenhu area,South China Sea[J]. Applied Geophysics,2014,11(2):207-214. doi: 10.1007/s11770-014-0432-6

    CrossRef Google Scholar

    [42] DELLI M L. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering,2014,120:1-9. doi: 10.1016/j.petrol.2014.05.011

    CrossRef Google Scholar

    [43] DAIGLE H. Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis[J]. Journal of Petroleum Science and Engineering,2016,146:526-535. doi: 10.1016/j.petrol.2016.07.011

    CrossRef Google Scholar

    [44] JIN Y R,YANG D Y,LI S X,et al. Hydrate dissociation conditioned to depressurization below the quadruple point and salinity addition[J]. Fuel,2019,255:115758. doi: 10.1016/j.fuel.2019.115758

    CrossRef Google Scholar

    [45] SHEN P F,LI G,LI B,et al. Permeability measurement and discovery of dissociation process of hydrate sediments[J]. Journal of Natural Gas Science and Engineering,2020,75:103155. doi: 10.1016/j.jngse.2020.103155

    CrossRef Google Scholar

    [46] JI Y K, HOU J, ZHAO E M, et al. Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low‐field NMR technique[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2):1–17.

    Google Scholar

    [47] SHEN P F,LI G,LI B,et al. Coupling effect of porosity and hydrate saturation on the permeability of methane Hydrate-bearing sediments[J]. Fuel,2020,269:117425. doi: 10.1016/j.fuel.2020.117425

    CrossRef Google Scholar

    [48] KANG D J,LU J A,ZHANG Z J,et al. Fine-grained gas hydrate reservoir properties estimated from well logs and lab measurements at the Shenhu gas hydrate production test site,the northern slope of the South China Sea[J]. Marine and Petroleum Geology,2020,122:104676. doi: 10.1016/j.marpetgeo.2020.104676

    CrossRef Google Scholar

    [49] MURPHY Z W, DICARLO D A, FLEMINGS P B, et al. Hydrate is a nonwetting phase in porous media[J]. Geophysical Research Letters, 2020, 47(16):e2020GL089289.

    Google Scholar

    [50] LI G,XU Z L,LI X S,et al. Permeability investigation and hydrate migration of hydrate–bearing silty sands and silt[J]. Journal of Natural Gas Science and Engineering,2021,89:103891. doi: 10.1016/j.jngse.2021.103891

    CrossRef Google Scholar

    [51] SEOL Y,KNEAFSEY T J. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media[J]. Journal of Geophysical Research,2011,116(B8):B08102.

    Google Scholar

    [52] PAN L L, LEI L, SEOL Y. Pore-scale influence of methane hydrate on permeability of porous media[R]. Geophysics, 2020.

    Google Scholar

    [53] ZHAO Q,DUNN K J,LIU X W. A simulation study of formation permeability as a function of methane hydrate concentration[J]. Applied Geophysics,2011,8(2):101-109. doi: 10.1007/s11770-011-0283-3

    CrossRef Google Scholar

    [54] CHOI J H,MYSHAKIN E M,LEI L,et al. An experimental system and procedure of Unsteady-state relative permeability test for gas hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2020,83:103545. doi: 10.1016/j.jngse.2020.103545

    CrossRef Google Scholar

    [55] BUCKLEY S E,LEVERETT M C. Mechanism of fluid displacement in sands[J]. Transactions of the AIME,1942,146(1):107-116. doi: 10.2118/942107-G

    CrossRef Google Scholar

    [56] JOHNSON E F,BOSSLER D P,BOSSLER V O N. Calculation of relative permeability from displacement experiments[J]. Transactions of the AIME,1959,216(1):370-372. doi: 10.2118/1023-G

    CrossRef Google Scholar

    [57] JONES S C,ROSZELLE W O. Graphical techniques for determining relative permeability from displacement experiments[J]. Journal of Petroleum Technology,1978,30(5):807-817. doi: 10.2118/6045-PA

    CrossRef Google Scholar

    [58] TOTH J, BODI T, SZUCS P, et al. Convenient formulae for determination of relative permeability from unsteady-state fluid displacements in core plugs[J]. Journal of Petroleum Science and Engineering, 2002, 36(1/2): 33–44.

    Google Scholar

    [59] JOHNSON A,PATIL S,DANDEKAR A. Experimental investigation of Gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):419-426. doi: 10.1016/j.marpetgeo.2009.10.013

    CrossRef Google Scholar

    [60] AHN T,LEE J,HUH D G,et al. Experimental study on Two-phase flow in artificial hydrate-bearing sediments[J]. Geosystem Engineering,2005,8(4):101-104. doi: 10.1080/12269328.2005.10541244

    CrossRef Google Scholar

    [61] XUE K H,YANG L,ZHAO J F,et al. The study of flow characteristics during the decomposition process in Hydrate-bearing porous media using magnetic resonance imaging[J]. Energies,2019,12(9):1736. doi: 10.3390/en12091736

    CrossRef Google Scholar

    [62] TOTH J,BODI T,SZUCS P,et al. Practical method for analysis of immiscible displacement in laboratory core tests[J]. Transport in Porous Media,1998,31(3):347-363. doi: 10.1023/A:1006570117639

    CrossRef Google Scholar

    [63] ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research,2001,37(2):265-271. doi: 10.1029/2000WR900254

    CrossRef Google Scholar

    [64] CAMPBELL G S. A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science,1974,117(6):311-314. doi: 10.1097/00010694-197406000-00001

    CrossRef Google Scholar

    [65] FISCHER U,CELIA M A. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a Pore-scale network model[J]. Water Resources Research,1999,35(4):1089-1100. doi: 10.1029/1998WR900048

    CrossRef Google Scholar

    [66] MUALEM Y. Hydraulic conductivity of unsaturated soils: prediction and formulas[M]//KLUTE A, ed. //SSSA Book Series. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy, 2018: 799–823.

    Google Scholar

    [67] VOGEL T,CISLEROVA M. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve[J]. Transport in Porous Media,1988,3(1):1-15. doi: 10.1007/BF00222683

    CrossRef Google Scholar

    [68] PARKER J C,LENHARD R J,KUPPUSAMY T. A parametric model for constitutive properties governing multiphase flow in porous media[J]. Water Resources Research,1987,23(4):618-624. doi: 10.1029/WR023i004p00618

    CrossRef Google Scholar

    [69] BROOKS R H, COREY A T. Hydraulic properties of porous media and their relation to drainage design[J]. Transactions of the ASAE,1964,7(1):0026-0028. doi: 10.13031/2013.40684

    CrossRef Google Scholar

    [70] MAHABADI N,DAI S,SEOL Y,et al. The water retention curve and relative permeability for gas production from hydrate‐bearing sediments:pore‐network model simulation[J]. Geochemistry Geophysics Geosystems,2016,17(8):3099-3110. doi: 10.1002/2016GC006372

    CrossRef Google Scholar

    [71] LIU L L,ZHANG Z,LI C F,et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic,mechanical,and electrical properties of hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2020,75:103109. doi: 10.1016/j.jngse.2019.103109

    CrossRef Google Scholar

    [72] LI G Y, ZHAN L T, YUN T, et al. Pore-scale controls on the gas and water transport in hydrate-bearing sediments[J]. Geophysical Research Letters, 2020, 47(12): e2020GL086990.

    Google Scholar

    [73] STONE H L. Probability model for estimating Three-phase relative permeability[J]. Journal of Petroleum Technology,1970,22(2):214-218. doi: 10.2118/2116-PA

    CrossRef Google Scholar

    [74] FREDLUND D G,XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(6):1026-1026. doi: 10.1139/t94-120

    CrossRef Google Scholar

    [75] MORIDIS G J, REAGAN M T. Strategies for gas production from oceanic class 3 hydrate accumulations[C]//All Days. Houston, Texas: OTC, 2007: OTC-18865-MS.

    Google Scholar

    [76] ANDERSON B J,KURIHARA M,WHITE M D,et al. Regional long-term production modeling from a single well test,Mount Elbert gas hydrate stratigraphic test well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):493-501. doi: 10.1016/j.marpetgeo.2010.01.015

    CrossRef Google Scholar

    [77] GAMWO I K,LIU Y. Mathematical modeling and numerical simulation of methane production in a hydrate reservoir[J]. Industrial & Engineering Chemistry Research,2010,49(11):5231-5245.

    Google Scholar

    [78] HONG H,POOLADI DARVISH M. Simulation of depressurization for gas production from gas hydrate reservoirs[J]. Journal of Canadian Petroleum Technology,2005,44(11):39-46.

    Google Scholar

    [79] MORIDIS G J,SLOAN E D. Gas production potential of disperse Low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management,2007,48(6):1834-1849. doi: 10.1016/j.enconman.2007.01.023

    CrossRef Google Scholar

    [80] REAGAN M T,MORIDIS G J. Dynamic response of oceanic hydrate deposits to ocean temperature change[J]. Journal of Geophysical Research:Oceans,2008,113(C12):C12023.

    Google Scholar

    [81] RUTQVIST J, MORIDIS G J. Numerical studies on the geomechanical stability of hydrate-bearing sediments[C]//All Days. Houston, Texas: OTC, 2007: OTC-18860-MS.

    Google Scholar

    [82] VAN GENUCHTEN M Th. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898. doi: 10.2136/sssaj1980.03615995004400050002x

    CrossRef Google Scholar

    [83] DAI S,KIM J,XU Y,et al. Permeability anisotropy and relative permeability in sediments from the National Gas Hydrate Program Expedition 02,offshore India[J]. Marine and Petroleum Geology,2019,108:705-713. doi: 10.1016/j.marpetgeo.2018.08.016

    CrossRef Google Scholar

    [84] GUPTA S,HELMIG R,WOHLMUTH B. Non-isothermal,multi-phase,multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences,2015,19(5):1063-1088. doi: 10.1007/s10596-015-9520-9

    CrossRef Google Scholar

    [85] KONNO Y,MASUDA Y,AKAMINE K,et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization Method[J]. Energy Conversion and Management,2016,108:439-445. doi: 10.1016/j.enconman.2015.11.030

    CrossRef Google Scholar

    [86] KONNO Y,OYAMA H,NAGAO J,et al. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough,Japan[J]. Energy & Fuels,2010,24(12):6353-6358.

    Google Scholar

    [87] MYSHAKIN E M,SEOL Y,LIN J-S,et al. Numerical simulations of Depressurization-induced gas production from an interbedded turbidite gas hydrate-bearing sedimentary section in the offshore India:Site NGHP-02-16 (Area-B)[J]. Marine and Petroleum Geology,2019,108:619-638. doi: 10.1016/j.marpetgeo.2018.10.047

    CrossRef Google Scholar

    [88] RUAN X K,SONG Y C,LIANG H F,et al. Numerical simulation of the gas production behavior of hydrate dissociation by depressurization in Hydrate-bearing porous medium[J]. Energy & Fuels,2012,26(3):1681-1694.

    Google Scholar

    [89] SINGH H,MAHABADI N,MYSHAKIN E M,et al. A mechanistic model for relative permeability of gas and water flow in hydrate‐bearing porous media with capillarity[J]. Water Resources Research,2019,55(4):3414-3432. doi: 10.1029/2018WR024278

    CrossRef Google Scholar

    [90] FATT I. The network model of porous media[J]. Transactions of the AIME,1956,207(01):144-181. doi: 10.2118/574-G

    CrossRef Google Scholar

    [91] BLUNT M J. Multiphase flow in permeable media: a pore-scale perspective[M]. Cambridge, United Kingdom ; New York, NY: Cambridge University Press, 2017.

    Google Scholar

    [92] LINDQUIST W B,LEE S-M,COKER D A,et al. Medial axis analysis of void structure in Three-dimensional tomographic images of porous media[J]. Journal of Geophysical Research:Solid Earth,1996,101(B4):8297-8310. doi: 10.1029/95JB03039

    CrossRef Google Scholar

    [93] SILIN D B, JIN G, PATZEK T W. Robust Determination of the pore space morphology in sedimentary rocks[C]//All Days. Denver, Colorado: SPE, 2003: SPE-84296-MS.

    Google Scholar

    [94] ALKHARUSI A S,BLUNT M J. Network extraction from sandstone and carbonate pore space Images[J]. Journal of Petroleum Science and Engineering,2007,56(4):219-231. doi: 10.1016/j.petrol.2006.09.003

    CrossRef Google Scholar

    [95] YANG M J,SUN H R,CHEN B B,et al. Effects of Water-gas two-phase flow on methane hydrate dissociation in porous media[J]. Fuel,2019,255:115637. doi: 10.1016/j.fuel.2019.115637

    CrossRef Google Scholar

    [96] LI M,GUO Y H,LI Z F,et al. Pore-throat combination types and gas-water relative permeability responses of tight gas sandstone reservoirs in the Zizhou area of East Ordos Basin,China[J]. Acta Geologica Sinica-English Edition,2019,93(3):622-636. doi: 10.1111/1755-6724.13872

    CrossRef Google Scholar

    [97] YANG H J,BALHOFF M T. Pore-network modeling of particle retention in porous Media[J]. AIChE Journal,2017,63(7):3118-3131. doi: 10.1002/aic.15593

    CrossRef Google Scholar

    [98] CAI J C,XIA Y X,LU C,et al. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology,2020,115:104282. doi: 10.1016/j.marpetgeo.2020.104282

    CrossRef Google Scholar

    [99] 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 第1 版. 北京: 化学工业出版社, 2008.

    Google Scholar

    [100] YANG L,AI L,XUE K H,et al. Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT Observation[J]. Energy,2018,163:27-37. doi: 10.1016/j.energy.2018.08.100

    CrossRef Google Scholar

    [101] VALVATNE P H, PIRI M, LOPEZ X, et al. Predictive Pore-scale modeling of single and multiphase flow[J]. Transport in Porous Media, 2005, 58(1/2): 23–41.

    Google Scholar

    [102] ZHANG L X,GE K,WANG J Q,et al. Pore-scale investigation of permeability evolution during hydrate formation using a pore network model based on X-ray CT[J]. Marine and Petroleum Geology,2020,113:104157. doi: 10.1016/j.marpetgeo.2019.104157

    CrossRef Google Scholar

    [103] WANG D G,WANG C C,LI C F,et al. Effect of gas hydrate formation and decomposition on flow properties of Fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. FUEL,2018,226(1):516-526.

    Google Scholar

    [104] WANG J Q,ZHAO J F,YANG M J,et al. Permeability of Laboratory-formed porous media containing methane hydrate:observations using X-ray computed tomography and simulations with pore network models[J]. Fuel,2015,145:170-179. doi: 10.1016/j.fuel.2014.12.079

    CrossRef Google Scholar

    [105] MAHABADI N,JANG J. Relative water and gas permeability for gas production from Hydrate-bearing sediments[J]. Geochemistry,Geophysics,Geosystems,2014,15(6):2346-2353.

    Google Scholar

    [106] WANG J Q,ZHAO J F,ZHANG Y. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT[J]. Fuel,2016,163(1):34-40.

    Google Scholar

    [107] WANG Y S,YANG Y F,WANG K,et al. Changes in relative permeability curves for natural gas hydrate decomposition due to particle migration[J]. Journal of Natural Gas Science and Engineering,2020,84:103634. doi: 10.1016/j.jngse.2020.103634

    CrossRef Google Scholar

    [108] ANDERSON W G. Wettability literature survey—Part 5:The effects of wettability on relative permeability[J]. Journal of Petroleum Technology,1987,39(11):1453-1468. doi: 10.2118/16323-PA

    CrossRef Google Scholar

    [109] ANDREW M,BIJELJIC B,BLUNT M J. Pore-scale contact angle measurements at reservoir conditions using X-ray Microtomography[J]. Advances in Water Resources,2014,68:24-31. doi: 10.1016/j.advwatres.2014.02.014

    CrossRef Google Scholar

    [110] WANG J Q,ZHAO J F,ZHANG Y. Analysis of the influence of wettability on permeability in Hydrate-bearing porous media using pore network models combined with computed tomography[J]. Journal of Natural Gas Science and Engineering,2015,26:1372-1379. doi: 10.1016/j.jngse.2015.08.021

    CrossRef Google Scholar

    [111] WANG J Q,ZHANG L X,ZHAO J F,et al. Variations in permeability along with interfacial tension in Hydrate-bearing porous Media[J]. Journal of Natural Gas Science and Engineering,2018,51:141-146. doi: 10.1016/j.jngse.2017.12.029

    CrossRef Google Scholar

    [112] MAHABADI N,ZHENG X,JANG J. The effect of hydrate saturation on water retention curves in hydrate‐bearing sediments[J]. Geophysical Research Letters,2016,43(9):4279-4287. doi: 10.1002/2016GL068656

    CrossRef Google Scholar

    [113] SINGH H,MYSHAKIN E M,SEOL Y. A novel relative permeability model for gas and water flow in Hydrate-bearing sediments with laboratory and field-scale application[J]. Scientific Reports,2020,10(1):5697. doi: 10.1038/s41598-020-62284-5

    CrossRef Google Scholar

    [114] PURCELL W R. Capillary pressures - their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology,1949,1(2):39-48. doi: 10.2118/949039-G

    CrossRef Google Scholar

    [115] LEI G,LIAO Q Z,LIN Q L,et al. Stress dependent Gas-water relative permeability in gas hydrates:A theoretical model[J]. Advances in Geo-Energy Research,2020,4(3):326-338. doi: 10.46690/ager.2020.03.10

    CrossRef Google Scholar

    [116] LIU L L,DAI S,NING F L,et al. Fractal characteristics of unsaturated sands: implications to relative permeability in hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering,2019,66:11-17. doi: 10.1016/j.jngse.2019.03.019

    CrossRef Google Scholar

    [117] 刘乐乐,刘昌岭,孟庆国,等. 分形理论在天然气水合物研究领域的应用[J]. 海洋地质前沿,2020,36(9):11-22.

    Google Scholar

    [118] 李世龙,李刚,魏纳,等. 含甲烷水合物的石英砂渗透率实验和分形模型对比研究[J]. 新能源进展,2020,8(4):264-271. doi: 10.3969/j.issn.2095-560X.2020.04.003

    CrossRef Google Scholar

    [119] 刘乐乐,张准,宁伏龙,等. 含水合物沉积物渗透率分形模型[J]. 中国科学:物理学 力学 天文学,2019,49(3):165-172.

    Google Scholar

    [120] SINGH H,MYSHAKIN E M,SEOL Y. A nonempirical relative permeability model for Hydrate-bearing sediments[J]. SPE Journal,2019,24(2):547-562. doi: 10.2118/193996-PA

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(3850) PDF downloads(773) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint