2020 Vol. 36, No. 10
Article Contents

LIU Yaru, GAO Shunli, ZHOU Ping, TANG Xianjun. CHARACTERISTICS OF TRANSFORM FAULTS IN THE XIHU SAG AND THEIR SIGNIFICANCE TO HYDROCARBON ACCUMULATION[J]. Marine Geology Frontiers, 2020, 36(10): 42-49. doi: 10.16028/j.1009-2722.2020.032
Citation: LIU Yaru, GAO Shunli, ZHOU Ping, TANG Xianjun. CHARACTERISTICS OF TRANSFORM FAULTS IN THE XIHU SAG AND THEIR SIGNIFICANCE TO HYDROCARBON ACCUMULATION[J]. Marine Geology Frontiers, 2020, 36(10): 42-49. doi: 10.16028/j.1009-2722.2020.032

CHARACTERISTICS OF TRANSFORM FAULTS IN THE XIHU SAG AND THEIR SIGNIFICANCE TO HYDROCARBON ACCUMULATION

  • There are many reversed compressional and transform faults in the middle of the Xihu Sag. The transform faults are the ones controlling the accumulation and distribution of oil and gas. Based on 3D seismic data, gravity data, and stratigraphic thickness changes, the types and distribution patterns of faults in planes and vertical sections are studied in this paper. The sag is dominated by NE-NNE faults formed in the Pinghu stage of early Paleocene to Eocene. The faults may be roughly grouped into three fault systems: upper, middle, and lower, and the transform fault is mainly developed in the upper system. Three groups of transform faults, i.e. the Zhoushan-Guotou fault zone, the Southern Haijiao Bay fault zone, and the Northern Haijiao Bay fault zone are identified. Large transform fault zones play significant roles in trap formation and hydrocarbon accumulation. Many types of structures and trap types, such as the twisted and bifurcated “Y” shaped traps, the twisted and transformed “H” shaped traps and the twisted and reformed “Y” shaped traps are mainly developed on the background of the transform fault zone. In combination with the case analysis of oil and gas fields in the transform fault zones of Southern Haijiao Bay, it is concluded that the transform faults, as a migration channel, is of critical significance to the secondary migration of oil and gas.

  • 加载中
  • [1] 黄志超,叶加仁. 东海海域油气资源与选区评价[J]. 地质科技情报,2010,134(5):51-55. doi: 10.3969/j.issn.1000-7849.2010.05.008

    CrossRef Google Scholar

    [2] 徐志星. 西湖凹陷异常地层压力特征及其与油气成藏的关系[D]. 成都: 成都理工大学, 2015.

    Google Scholar

    [3] 张国华,张建培. 东海陆架盆地构造反转特征及成因机制探讨[J]. 地学前缘,2015,111(1):260-270.

    Google Scholar

    [4] 徐长贵. 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学,2016,41(9):1548-1559.

    Google Scholar

    [5] 何希鹏,何贵松,高玉巧. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 地质勘探,2018,38(12):1-13.

    Google Scholar

    [6] Rojay B,Heimann A,Toprak V. Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia,Turkey):the transition zone between the Dead Sea transform and the East Anatolian fault zone[J]. Geodinamica Acta,2001,14(1/3):197-212.

    Google Scholar

    [7] Christeson G L,Gulick S P S,van Avendonk H J A,et al. The Yakutat terrane:Dramatic change in crustal thickness across the Transition fault,Alaska[J]. Geology,2010,38(10):895-898. doi: 10.1130/G31170.1

    CrossRef Google Scholar

    [8] 陈志勇,葛和平. 西湖凹陷反转构造与油气聚集[J]. 中国海上油气(地质),2003,15(1):22-26.

    Google Scholar

    [9] 张建培,张 涛,刘景彦,等. 西湖凹陷反转构造分布与样式[J]. 海洋石油,2008,139(4):14-20. doi: 10.3969/j.issn.1008-2336.2008.04.003

    CrossRef Google Scholar

    [10] 李云波,姜 波,赵志刚,等. 西湖凹陷构造发育及其对平湖组煤系的控制:与黄县盆地对比分析[J]. 中国矿业大学学报,2014,198(3):432-441.

    Google Scholar

    [11] 陈智远,徐志星,徐国盛,等. 东海盆地西湖凹陷中央反转构造带异常高压与油气成藏的耦合关系[J]. 石油与天然气地质,2017,38(3):570-581. doi: 10.11743/ogg20170317

    CrossRef Google Scholar

    [12] 郭 真,刘池洋,田建锋. 东海盆地西湖凹陷反转构造特征及其形成的动力环境[J]. 地学前缘,2015,113(3):59-67.

    Google Scholar

    [13] 刘晓晨. 西湖凹陷平湖斜坡带平湖组砂体精细刻画及时空演化研究[D]. 武汉: 中国地质大学(武汉), 2018.

    Google Scholar

    [14] 侯国伟,李 帅,秦兰芝,等. 西湖凹陷西部斜坡带平湖组源-汇体系特征[J]. 中国海上油气,2019,31(3):29-39.

    Google Scholar

    [15] 蔡 华,张建培. 东海西湖凹陷平湖斜坡带断层特征及其封闭性[J]. 海洋地质前沿,2013,29(4):20-26.

    Google Scholar

    [16] 蔡 华,张建培,唐贤君. 西湖凹陷断裂系统特征及其控藏机制[J]. 天然气工业,2014,34(10):18-26. doi: 10.3787/j.issn.1000-0976.2014.10.003

    CrossRef Google Scholar

    [17] 任建业. 中国近海海域新生代成盆动力机制分析[J]. 地球科学,2018,43(10):3337-3361.

    Google Scholar

    [18] 孟祥君,张训华. 东海西湖凹陷北部基底构造特征[J]. 海洋地质与第四纪地质,2008,28(2):61-63.

    Google Scholar

    [19] 宁 飞,汤良杰,朱传玲,等. 挤压区局部构造转换带类型及石油地质意义[J]. 现代地质,2009,23(3):394-400. doi: 10.3969/j.issn.1000-8527.2009.03.002

    CrossRef Google Scholar

    [20] 梅庆华. 四川盆地乐山—龙女寺古隆起构造演化及其成因机制[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    [21] 高玲举,张 健,董 淼. 川西高原重磁异常特征与构造背景分析[J]. 地球物理学报,2015,58(8):2996-3008. doi: 10.6038/cjg20150831

    CrossRef Google Scholar

    [22] 马国庆,明彦伯,黄大年. 基于重磁异常的新生代丽水—椒江凹陷基底分布特征研究[J]. 吉林大学学报(地球科学版),2018,48(5):1493-1500.

    Google Scholar

    [23] 张功成,贾庆军,王万银,等. 南海构造格局及其演化[J]. 地球物理学报,2018,61(10):4194-4215. doi: 10.6038/cjg2018L0698

    CrossRef Google Scholar

    [24] 张菲菲,孟祥君,韩 波,等. 辽东湾地区重、磁异常特征及其区域构造分析[J]. 海洋地质与第四纪地质,2019,179(3):104-112.

    Google Scholar

    [25] Gutscher M,Klaeschen D,Flueh E,et al. Non Coulomb wedges,wrong-way thrusting,and natural hazards in Cascadia[J]. Geology,2001,29(5):379-382. doi: 10.1130/0091-7613(2001)029<0379:NCWWWT>2.0.CO;2

    CrossRef Google Scholar

    [26] Thoma W A,Bayona G. Palinspastic restoration of the Anniston transverse zone in the Appalachian thrust belt,Alabama[J]. Journal of Structural Geology,2002,24(1):797-826.

    Google Scholar

    [27] 周荔青. 深大断裂与中国东部新生代盆地油气资源分布[M]. 北京: 石油工业出版社, 2006.

    Google Scholar

    [28] 鲍志东,赵艳军,祁利祺,等. 构造转换带储集体发育的主控因素:以准噶尔盆地腹部侏罗系为例[J]. 岩石学报,2011,27(3):867-877.

    Google Scholar

    [29] 孙 阳,任建业. 东营凹陷北带转换带构造与储集体分布[J]. 石油勘探与开发,2004,31(1):21-23. doi: 10.3321/j.issn:1000-0747.2004.01.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1592) PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint