2020 Vol. 36, No. 12
Article Contents

HUANG Jianliang, YANG Huaizhong, LI Haibin, GUO Yun, SHI Ruiqi. KEY TECHNOLOGY FOR EXPLORATION OF COMPLEX PRESALT TRAPS IN THE DEEP WATERS OF GABON BASIN, WEST AFRICA[J]. Marine Geology Frontiers, 2020, 36(12): 56-64. doi: 10.16028/j.1009-2722.2019.200
Citation: HUANG Jianliang, YANG Huaizhong, LI Haibin, GUO Yun, SHI Ruiqi. KEY TECHNOLOGY FOR EXPLORATION OF COMPLEX PRESALT TRAPS IN THE DEEP WATERS OF GABON BASIN, WEST AFRICA[J]. Marine Geology Frontiers, 2020, 36(12): 56-64. doi: 10.16028/j.1009-2722.2019.200

KEY TECHNOLOGY FOR EXPLORATION OF COMPLEX PRESALT TRAPS IN THE DEEP WATERS OF GABON BASIN, WEST AFRICA

  • In recent years, global deepwater oil and gas exploration, as demonstrated by West Africa and the Gulf of Mexico, has become increasingly active. Verification of structures is always the key problem in salt basin exploration. Therefore, it really is a great need to develop a set of technology for trap identification to support the exploration of oil and gas under salt cap in the deep water of Gabon Basin. Based on the studies of the mechanisms of salt rock deformation and its impacts on seismic imaging, a set of key technology is proposed in this paper. It includes: ①Establishment of interpretation models for structures based on the mechanism of salt rock deformation; ②Introducing the technique for pre-salt seismic horizon interpretation based on the fine recognition of dirty salt bodies; ③Integration of gravity, magnetic and seismic data for multiscale comprehensive interpretation of pre-salt faults; ④Adoption of the method for distinguishing false images from the real based on wave equation forward modeling. Using the method, a series of pre-salt traps are effectively identified in the research area, and drilling proves that the M trap is a large pre-salt gas field. It is concluded that the technical system proposed can help solve the problem of the verification of pre-salt structures, which can be used as a reference for similar oil fields in West Africa and other regions.

  • 加载中
  • [1] 刘东周,窦立荣,郝银全,等. 滨里海盆地东部盐下成藏主控因素及勘探思路[J]. 海相油气地质,2004,19(1):53-58.

    Google Scholar

    [2] 梁杰,杨艳秋,龚建明,等. 墨西哥湾深水油气勘探对我国的启示[J]. 海洋地质动态,2009,25(1):17-19. doi: 10.3969/j.issn.1009-2722.2009.01.004

    CrossRef Google Scholar

    [3] 赵阳,卢景美,刘学考,等. 墨西哥湾深水油气勘探研究特点与发展趋势[J]. 海洋地质前沿,2014,30(6):27-32.

    Google Scholar

    [4] 程涛,康洪全,白博,等. 巴西桑托斯盆地盐下湖相碳酸盐岩勘探关键技术及其应用[J]. 中国海上油气,2018,30(4):27-35.

    Google Scholar

    [5] 梁顺军,梁霄,杨晓,等. 地震勘探技术发展在库车前陆盆地潜伏背斜气田群发现中的实践与意义[J]. 中国石油勘探,2016,21(6):98-109. doi: 10.3969/j.issn.1672-7703.2016.06.0013

    CrossRef Google Scholar

    [6] 梁顺军,雷开强,王静,等. 库车坳陷大北—克深砾石区地震攻关与天然气勘探突破[J]. 中国石油勘探,2014,19(5):49-58. doi: 10.3969/j.issn.1672-7703.2014.05.005

    CrossRef Google Scholar

    [7] 杨海军,李勇,唐雁刚,等. 塔里木盆地克拉苏盐下深层大气田的发现[J]. 新疆石油地质,2019,40(1):12-20.

    Google Scholar

    [8] MUERDTER D,RATCLIFF D. Understanding subsalt illumination through ray-trace modeling,Part 1:Simple 2-D salt models[J]. The Leading Edge,2001,20(6):578-594. doi: 10.1190/1.1438998

    CrossRef Google Scholar

    [9] MUERDTER D,RATCLIFF D. Understanding subsalt illumination through ray-trace modeling,Part 2:Dipping salt bodies,salt peaks,and nonreciprocity of subsalt amplitude response[J]. The Leading Edge,2001,20(7):688-697. doi: 10.1190/1.1487279

    CrossRef Google Scholar

    [10] MUERDTER D,RATCLIFF D. Understanding subsalt illumination through ray-trace modeling,Part 3:Salt ridges and furrows,and the impact of acquisition orientation[J]. The Leading Edge,2001,20(8):803-816. doi: 10.1190/1.1487289

    CrossRef Google Scholar

    [11] 阳怀忠,邓运华,黄兴文,等. 西非加蓬盆地深水盐下油气勘探技术创新与实践[J]. 中国海上油气,2018,30(4):1-12.

    Google Scholar

    [12] 梁瀚,马波,肖柏夷,等. 基于构造变形约束的川东寒武系膏盐层分布[J]. 古地理学报,2019,21(5):825-834. doi: 10.7605/gdlxb.2019.05.056

    CrossRef Google Scholar

    [13] 卞青,陈琰,张国卿,等. 柴达木盆地膏盐层岩石物理特征及其对构造变形的影响[J]. 石油学报,2020,41(2):197-204. doi: 10.7623/syxb202002005

    CrossRef Google Scholar

    [14] 代双河,高军,臧殿光,等. 滨里海盆地东缘巨厚盐岩区盐下构造的解释方法研究[J]. 石油地球物理勘探,2006,41(3):303-307. doi: 10.3321/j.issn:1000-7210.2006.03.014

    CrossRef Google Scholar

    [15] 李明刚. 桑托斯盆地盐下裂谷系构造特征及圈闭发育模式[J]. 断块油气田,2017,24(5):608-612.

    Google Scholar

    [16] TEISSERENC P, VILLEMIN J. Sedimentary Basin of Gabon-Geology and Oil Systems [M]// Edwards J D, Santogrossi P A. Divergent/Passive Margin Basins. American Association of Petroleum Geologists Memoir, 1989, 46: 117-199.

    Google Scholar

    [17] 戈红星,JACKSON M P A. 盐构造与油气圈闭及其综合利用[J]. 南京大学学报(自然科学版),1996,32(4):640-647. doi: 10.3321/j.issn:0469-5097.1996.04.001

    CrossRef Google Scholar

    [18] 余一欣,周心怀,彭文绪,等. 盐构造研究进展述评[J]. 大地构造与成矿学,2011,35(2):169-182. doi: 10.3969/j.issn.1001-1552.2011.02.001

    CrossRef Google Scholar

    [19] 赵鹏,王英民,周瑾,等. 西非被动大陆边缘盐构造样式与成因机制[J]. 海洋地质前沿,2013,29(10):14-22.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1014) PDF downloads(56) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint