2020 Vol. 36, No. 8
Article Contents

WAN Tinghui, LI Zhanzhao, AVIS John, WANG Jingli, LU Cheng, MA Chao, LI Keliang. HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION[J]. Marine Geology Frontiers, 2020, 36(8): 74-80. doi: 10.16028/j.1009-2722.2019.190
Citation: WAN Tinghui, LI Zhanzhao, AVIS John, WANG Jingli, LU Cheng, MA Chao, LI Keliang. HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION[J]. Marine Geology Frontiers, 2020, 36(8): 74-80. doi: 10.16028/j.1009-2722.2019.190

HORIZONTAL WELLBORE TRAJECTORY MODELING BASED ON MVIEW IN NUMERICAL SIMULATION OF NATURAL GAS HYDRATE PRODUCTION

More Information
  • This paper proposed a solution to the wellbore trajectory modeling in the process of using the TOUGH+HYDRATE to simulate the horizontal well depressurization of natural gas hydrate. The mVIEW is used to model the horizontal wellbore trajectory, and the model verification is carried out to make up the deficiencies of the simulator in complex modeling and improve the efficiency of the simulator. The horizontal well model with wellbore trajectory can better guide actual production because it is closer to the real production situation in the Z direction.

  • 加载中
  • [1] Sloan E D, Koh C A. Clathrate hydrates of natural gases:3rd[M].Speight J G. Laramie Wyoming, 2008.

    Google Scholar

    [2] Milkov A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews,2004,66(3/4):183-197. doi: 10.1016/j.earscirev.2003.11.002

    CrossRef Google Scholar

    [3] Klauda J B,Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy Fuels,2005,19(2):459-470. doi: 10.1021/ef049798o

    CrossRef Google Scholar

    [4] Lee S Y,Holder G D. Methane hydrate potential as a future energy source[J]. Fuel Processing Technology,2001,71(I-3):181-186.

    Google Scholar

    [5] Collett T S. Gas hydrate as a future energy resource[J]. Geotimes,2004,49(11):24-27.

    Google Scholar

    [6] Reagan M T,Kowalsky M B,Moridis G J,et al. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost[J]. Physics Letters A,2010,90:33-36.

    Google Scholar

    [7] Moridis G J,Reagan M T. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost:1. Concepts,system description,and the production base case[J]. Journal of Petroleum Science and Engineering,2011a,76:194-204. doi: 10.1016/j.petrol.2010.11.023

    CrossRef Google Scholar

    [8] Li X,Xu C,Zhang Y,et al. Investigation into gas production from natural gas hydrate:A review[J]. Applied Energy,2016,172:286-322. doi: 10.1016/j.apenergy.2016.03.101

    CrossRef Google Scholar

    [9] Moridis G J, Kowalsky M B, Pruess K. TOUGH+HYDRATE v1.1 user’s manual: A code for the simulation of system behavior in hydrate-bearing geologic media[M]. Berkeley, California, 2009.

    Google Scholar

    [10] Moridis G J. Numerical studies of gas production from Class 2 and Class 3 hydrate accumulations at the Mallik Site,Mackenzie Delta,Canada[J]. SPE Reservoir Evaluation and Engineering,2004,7(3):175-183. doi: 10.2118/88039-PA

    CrossRef Google Scholar

    [11] Moridis G J,Collett T S,Dallimore S R,et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site,Mackenzie Delta,Canada[J]. Journal of Petroleum Science and Engineering,2004,43(3/4):219-328. doi: 10.1016/j.petrol.2004.02.015

    CrossRef Google Scholar

    [12] 苏 正,吴能友,张可霓. 南海北部陆坡神狐天然气水合物开发潜力[J]. 海洋地质前沿,2011,27(6):16-23.

    Google Scholar

    [13] 苏 正,何 勇,吴能友. 南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J]. 热带海洋学报,2012,31(5):74-82. doi: 10.3969/j.issn.1009-5470.2012.05.011

    CrossRef Google Scholar

    [14] 李 刚,李小森,Zhang K N,等. 水平井开采南海神狐海域天然气水合物数值模拟[J]. 地球物理学报,2011,54(9):2325-2337. doi: 10.3969/j.issn.0001-5733.2011.09.016

    CrossRef Google Scholar

    [15] 李小森,陈 琦,李 刚,等. 海底水合物矿藏降压开采与甲烷气体扩散过程的数值模拟[J]. 现代地质,2010,24(3):598-606. doi: 10.3969/j.issn.1000-8527.2010.03.026

    CrossRef Google Scholar

    [16] 庞维新,李清平,孙福街,等. 天然气水合物藏开采数值模拟研究[J]. 中国煤炭地质,2015,27(8):31-37. doi: 10.3969/j.issn.1674-1803.2015.08.07

    CrossRef Google Scholar

    [17] 郭朝斌,张可霓,凌璐璐. 天然气水合物数值模拟方法及其应用[J]. 上海国土资源,2013,34(2):71-79. doi: 10.3969/j.issn.2095-1329.2013.02.017

    CrossRef Google Scholar

    [18] Feng J C,Li X S,Li G,et al. Numerical investigation of hydrate dissociation performance in the South China Sea with different horizontal well configurations[J]. Energies,2014,7:4813-4814. doi: 10.3390/en7084813

    CrossRef Google Scholar

    [19] Li X S,Yang B,Li G,et al. Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain Permafrost[J]. Industrial & Engineering Chemistry Research,2012,51:4424-4432.

    Google Scholar

    [20] Sun J X,Ning F L,Zhang L,et al. Numerical simulation on gas production from hydrate reservoir at the 1st offshore test site in the eastern Nankai Trough[J]. Journal of Natural Gas Science and Engineering,2016(30):64-76.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(1276) PDF downloads(16) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint