2019 Vol. 35, No. 2
Article Contents

GUO Qianying, ZHENG Yan, LI Haiyan. APPLICATION OF CENTRIFUGATION TO CLASSIFICATION OF MARINE CLASTIC SEDIMENTS[J]. Marine Geology Frontiers, 2019, 35(2): 18-26. doi: 10.16028/j.1009-2722.2019.02003
Citation: GUO Qianying, ZHENG Yan, LI Haiyan. APPLICATION OF CENTRIFUGATION TO CLASSIFICATION OF MARINE CLASTIC SEDIMENTS[J]. Marine Geology Frontiers, 2019, 35(2): 18-26. doi: 10.16028/j.1009-2722.2019.02003

APPLICATION OF CENTRIFUGATION TO CLASSIFICATION OF MARINE CLASTIC SEDIMENTS

  • The grain size of sediments, as a result of complex geological processes of weathering, transportation and deposition, is one of the most important physical indicators in sedimentological study. The size of sediment particles may document detailed information on both provenance and hydrodynamics. It is very important for paleoenvironmental study to separate sediments into different groups of grains size effectively and rapidly. Pipette method is one of the methods often used by sdedimentologists for this purpose, but for marine sediments, which are usually too fine, this method is not satisfactory enough due to its time-consuming process, much loss and low separation efficiency. Centrifugation can accelerate the settling velocity of fine particles and increase the separation efficiency. Therefore, 27 surface sediments collected from the mud area along the inner continental shelf of the East China Sea is separated into four grades (< 2 μm, 2-10 μm, 10-63 μm, >63 μm) using the centrifugal method. Microscopic observation of the samples after sizing shows that there is no mixture between different grades, indicating that the separation using the centrifugation was effective and feasible. The average recovery rate for all samples is about 94%, and the highest is over 97%. The loss of each sample is positively correlated with the content of fine particles (< 10 μm), that is, the more the fine particles contained, the greater the loss. Further comparison with the results from the laser diffraction particle size analyzer is also carried out. It shows that the laser analyzer has a poor discrimination of particles < 10 μm, underestimating of < 2 μm particles and overestimating of 2-10 μm particles. This study shows that the centrifugation can effectively and rapidly separate fine marine sediments into grain size groups.

  • 加载中
  • [1] 朱筱敏.沉积岩石学[M].第4版.北京:石油工业出版社, 2008.

    Google Scholar

    [2] Johnsson M J, Basu A. Processes controlling the composition of clastic sediment[J]. Special Paper of the Geological Society of America, 1996, 284(3):1-19.

    Google Scholar

    [3] 赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质科学, 1983(4):307-314.

    Google Scholar

    [4] Rao W B, Mao C P, Wang Y G, et al. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China[J]. Marine Geology, 2015, 359(4):35-49.

    Google Scholar

    [5] 赵玉玲, 冯秀丽, 宋湦, 等.现代黄河三角洲附近海域表层沉积物地球化学分区[J].海洋科学, 2016, 40(9):98-106.

    Google Scholar

    [6] 张忆, 石学法, 王昆山.长江口泥质区表层沉积物元素地球化学[J].海洋地质与第四纪地质, 2010, 30(3):61-70.

    Google Scholar

    [7] 石学法, 刘升发, 乔淑卿, 等.中国东部近海沉积物地球化学:分布特征、控制因素与古气候记录[J].矿物岩石地球化学通报, 2015, 34(5):885-894.

    Google Scholar

    [8] 刘升发, 石学法, 刘焱光, 等.东海内陆架泥质区表层沉积物常量元素地球化学及其地质意义[J].海洋科学进展, 2010, 28(1):80-86. doi: 10.3969/j.issn.1671-6647.2010.01.011

    CrossRef Google Scholar

    [9] 杨守业, 李从先.长江与黄河沉积物元素组成及地质背景[J].海洋地质与第四纪地质, 1999, 19(2):19-26.

    Google Scholar

    [10] 林宝治.东海陆架及沿岸河口表层沉积物地球化学记录: 化学风化及其物源示踪[D].厦门: 厦门大学, 2015.

    Google Scholar

    [11] 韦桃源, 陈中原, 魏子新, 等.长江河口区第四纪沉积物中的地球化学元素分布特征及其古环境意义[J].第四纪研究, 2006, 26(3):397-405. doi: 10.3321/j.issn:1001-7410.2006.03.011

    CrossRef Google Scholar

    [12] Wang Y H, Yu Z G, Li G X, et al. Discrimination in magnetic properties of different-sized sediments from the Changjiang and Huanghe Estuaries of China and its implication for provenance of sediment on the shelf[J]. Marine Geology, 2009, 260(1-4):121-129. doi: 10.1016/j.margeo.2009.02.008

    CrossRef Google Scholar

    [13] Liu S M, Zhang W G, He Q, et al. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary:influence of provenance and particle size[J]. Geomorphology, 2010, 119(3):212-220.

    Google Scholar

    [14] Zhang W G, Xing Y, Yu L Z, et al. Distinguishing sediments from the Yangtze and Yellow Rivers, China: a mineral magnetic approach[J]. Holocene, 2008, 18(7):1139-1145. doi: 10.1177/0959683608095582

    CrossRef Google Scholar

    [15] Li W, Hu Z X, Zhang W G, et al. Influence of provenance and hydrodynamic sorting on the magnetic properties and geochemistry of sediments of the Oujiang River, China[J]. Marine Geology, 2017, 387(2017):1-11.

    Google Scholar

    [16] 吕慧捷, 何红波, 张旭东.土壤颗粒分级过程中超声破碎和离心分离的条件选择[J].土壤通报, 2012, 43(5):1126-1130.

    Google Scholar

    [17] 王娟, 周晨亮, 张跃进.离心法在土壤颗粒分级技术中的应用[J].上海环境科学, 2009, 28(6):246-249.

    Google Scholar

    [18] 武天云, Jeff J S, 李凤民, 等.利用离心法进行土壤颗粒分级[J].应用生态学报, 2004, 15(3):477-481. doi: 10.3321/j.issn:1001-9332.2004.03.024

    CrossRef Google Scholar

    [19] 赵杏媛, 张有瑜.黏土矿物与黏土矿物分析[M].北京:海洋出版社, 1990.

    Google Scholar

    [20] 李维显, 荣人德, 冯诗齐.长江口海区表层沉积物及其有机质分布特征[J].上海地质, 1987(3):40-55.

    Google Scholar

    [21] 范典高.黄河口区潮间带沉积物中的有机质[J].中国海洋大学学报:自然科学版, 1990, 20(1):133-135.

    Google Scholar

    [22] 程鹏, 高抒, 李徐生.激光粒度仪测试结果及其与沉降法、筛析法的比较[J].沉积学报, 2001, 19(3):449-455. doi: 10.3969/j.issn.1000-0550.2001.03.023

    CrossRef Google Scholar

    [23] 刘涛, 高晓飞.激光粒度仪与沉降—吸管法测定褐土颗粒组成的比较[J].水土保持研究, 2012, 19(1):16-22.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(776) PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint