2018 Vol. 34, No. 4
Article Contents

Changxiang CHEN, Lihua CAO, Zhenye ZHUANG, Jishang XU, Shunliang YANG, Dongbo ZHAO. YINGDONG SAND RIDGES IN EAST BEIBU GULF ANDTHEIR IMPACT ON PIPELINE ENGINEERING[J]. Marine Geology Frontiers, 2018, 34(4): 49-55. doi: 10.16028/j.1009-2722.2018.04007
Citation: Changxiang CHEN, Lihua CAO, Zhenye ZHUANG, Jishang XU, Shunliang YANG, Dongbo ZHAO. YINGDONG SAND RIDGES IN EAST BEIBU GULF ANDTHEIR IMPACT ON PIPELINE ENGINEERING[J]. Marine Geology Frontiers, 2018, 34(4): 49-55. doi: 10.16028/j.1009-2722.2018.04007

YINGDONG SAND RIDGES IN EAST BEIBU GULF ANDTHEIR IMPACT ON PIPELINE ENGINEERING

  • The Yingdong tidal sand ridge, which occurs in the east of Beibu gulf, is a part of the Qiongxinan sand ridge system. It is well developed outside the Ganen Cornor and smmothly extends to Dongfang. The sand ridge area can be divided into three sections, the deep water flat section, the current ridge and sand wave section and the nearshore section, from the offshore to the coast. In the current ridge and sand wave section, there are four sand ridges in NS or NW-SE direction roughly parallel to the main flow. The ridges are about 45km long with a large width. The valleys between ridges are usually 20-30m in depth, while the ridge top is 5-8m below sea level. Sand valleys are asymmetrical, steep on the land side and gentle on the sea side. The sand ridges were formed in the period of low sea level in Holocene and then eroded by modern wave. The foundation of sand ridge is strong and firm. Only in case of storm wave or strong current, can the surface sediment move in a small distance. In 2003, the Dongfang 1-1 seafloor pipeline was constructed, which passed through the Yingdong tidal sand ridge. Through the analysis of the Dongfang 1-1 offshore pipeline survey data acquired by OUC after construction, it is found that there are 130 points where the pipeline are suspended. The suspended part is 33m long on average and the distance between the pipe and the sea bottom is 1m in maximum. The suspension of pipeline is caused by the changes in bedforms and/or water dynamics.
  • 加载中
  • [1] 夏东兴, 吴桑云, 刘振夏, 等.海南东方岸外海底沙波活动性研究[J].海洋科学进展, 2001, 19(1):17-24. doi: 10.3969/j.issn.1671-6647.2001.01.003

    CrossRef Google Scholar

    [2] 王伟伟, 范奉鑫, 李成钢, 等.海南岛西南海底沙波活动及底床冲淤变化[J].海洋地质与第四纪地质, 2007, 27(4):23-28.

    Google Scholar

    [3] 曹立华, 徐继尚, 李广雪, 等.海南岛西部岸外沙波的高分辨率形态特征[J].海洋地质与第四纪地质, 2006, 26(4):15-22.

    Google Scholar

    [4] 王琳, 吴建政, 石巍.海南乐东陆架海底沙波形态特征及活动性研究[J].海洋湖沼通报, 2007(s1):53-59.

    Google Scholar

    [5] 王文介.南海北部的潮波传播与海底沙脊和沙波发育[J].热带海洋学报, 2000, 19(1):1-7. doi: 10.3969/j.issn.1009-5470.2000.01.001

    CrossRef Google Scholar

    [6] 刘昭蜀.南海地质[M].北京:科学出版社, 2002.

    Google Scholar

    [7] 刘乐军, 李培英, 杜军, 等.莺歌海油气资源开发区工程地质和灾害地质特征[C]//我国专属经济区和大陆架勘测研究专项学术交流会, 2004: 455-464.

    Google Scholar

    [8] Allen J R L. Sedimentary structures:their character and physical basis[M]. New York:Elsevier scientific Publishing Co, 1982.

    Google Scholar

    [9] Rubin D M, Hunter R E. Bedform climbing in theory and nature[J]. Sedimentology, 1982, 29(1): 121-138. doi: 10.1111/j.1365-3091.1982.tb01714.x

    CrossRef Google Scholar

    [10] 董志华, 曹立华, 薛荣俊.台风对北部湾南部海底地形地貌及海底管线的影响[J].海洋技术学报, 2004, 23(2):24-28.

    Google Scholar

    [11] Chiew Y M. Mechanics of local scour around submarine pipelines[J]. Journal of Hydraulic Engineering, 1990, 116(4):515-529. doi: 10.1061/(ASCE)0733-9429(1990)116:4(515)

    CrossRef Google Scholar

    [12] Gao F P, Yang B, Wu Y X, et al. Steady current induced seabed scour around a vibrating pipeline[J]. Applied Ocean Research, 2006, 28(5):291-298.

    Google Scholar

    [13] Sumer B M, Truelsen C, Sichmann T, et al. Onset of scour below pipelines and self-burial[J]. Coastal Engineering, 2001, 42(4):313-335. doi: 10.1016/S0378-3839(00)00066-1

    CrossRef Google Scholar

    [14] Aminzadeh A, Narayanan R. Erosion of sediments beneath an oscillating cylinder[J]. Maritime Engineering, 2008, 161(1):33-42.

    Google Scholar

    [15] 高伟.海南东方岸外陆架底形变化特征及对海底管线状态的影响[D].青岛: 中国海洋大学, 2008.

    Google Scholar

    [16] Dyer K R, Huntley D A. The origin, classification and modelling of sand banks and ridges[J]. Continental Shelf Research, 1999, 19(10):1285-1330. doi: 10.1016/S0278-4343(99)00028-X

    CrossRef Google Scholar

    [17] 夏东兴, 刘振夏.潮流脊的形成机制和发育条件[J].海洋学报, 1984, 6(3):361-367.

    Google Scholar

    [18] 徐继尚, 李广雪, 曹立华, 等.海底管道综合探测技术及东方1-1管道不稳定因素[J].海洋地质与第四纪地质, 2009, 29(5):47-54.

    Google Scholar

    [19] 吴建政, 胡日军, 朱龙海, 等.南海北部海底沙波研究[J].中国海洋大学学报:自然科学版, 2006, 36(6):1019-1023. doi: 10.3969/j.issn.1672-5174.2006.06.033

    CrossRef Google Scholar

    [20] 庄振业, 曹立华, 刘升发, 等.陆架沙丘(波)活动量级和稳定性标志研究[J].中国海洋大学学报:自然科学版, 2008, 38(6):1001-1007.

    Google Scholar

    [21] 庄振业, 林振宏, 周江, 等.陆架沙丘(波)形成发育的环境条件[J].海洋地质动态, 2004, 20(4):5-10. doi: 10.3969/j.issn.1009-2722.2004.04.002

    CrossRef Google Scholar

    [22] 赵焕庭, 王丽荣, 袁家义.琼州海峡成因与时代[J].海洋地质与第四纪地质, 2007, 27(2):33-40.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1220) PDF downloads(60) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint