2017 Vol. 33, No. 10
Article Contents

ZHANG Yingzhao, GAN Jun, YANG Xibing, XU Xinde, ZHU Jitian, YANG Jinhai, YANG Lu, LI Xing. TECTONIC EVOLUTION AND ITS CONSTRAINTS ON THE FORMATION OF DEEPWATER GIANT GAS FIELD IN LINGSHUI SAG, QIONGDONGNAN BASIN[J]. Marine Geology Frontiers, 2017, 33(10): 22-31. doi: 10.16028/j.1009-2722.2017.10003
Citation: ZHANG Yingzhao, GAN Jun, YANG Xibing, XU Xinde, ZHU Jitian, YANG Jinhai, YANG Lu, LI Xing. TECTONIC EVOLUTION AND ITS CONSTRAINTS ON THE FORMATION OF DEEPWATER GIANT GAS FIELD IN LINGSHUI SAG, QIONGDONGNAN BASIN[J]. Marine Geology Frontiers, 2017, 33(10): 22-31. doi: 10.16028/j.1009-2722.2017.10003

TECTONIC EVOLUTION AND ITS CONSTRAINTS ON THE FORMATION OF DEEPWATER GIANT GAS FIELD IN LINGSHUI SAG, QIONGDONGNAN BASIN

  • ecently, a deepwater giant gas field has been discovered in the Lingshui sag of the Qiongdongnan basin. As the result, Cenozoic structures and their constraining effects on the formation of deepwater giant gas field has gained great attention from researchers. In this paper, well data and seismic data are applied to study the Cenozoic structural evolution of the sag and their controlling effects over the formation of deepwater giant gas field from viewpoints of sequence stratigraghy and structural analysis. Compared with previous studies, the coupling of structure evolution, tectonic mechanism, sedimentary infilling and natural gas accumulation are emphasized. It is revealed that the Cenozoic structure evolution of the sag consisted of stages of Paleocene-Eocene rifting, Oligocene depressing-rifting, Early Miocene rifting-depressing and Middle-Miocene to Quaternary depressing. Data suggests that: a. Oligocene depressing-rifting controlled the distribution of source rocks of marine-terrestrial transitional facies and marine facies, and the depression from Middle-Miocene to Quaternary expanded the gas generation window. b. Oligocene depressing-rifting provided the opportunity for the formation of fan-delta reservoir, and the depression from Middle-Miocene to Pliocene caused the formation of confined and non-confined deepwater clastic reservoirs and reef carbonate reservoirs. c. Oligocene depressing-rifting later on provided the opportunities for the formation of various structural traps, such as the strike-slip-extention structures, fault-noses, fault-anticlines, and various lithological traps such as deepwater confined channel sandstone of gravity flow, non-confined basinal lithological traps and reef stratigraphic traps. d. overpressure in the stages of Oligocene depressing-rifting and Middle-Miocene depressing stages formed the new faults/fissures as the paths for migration.

  • 加载中
  • [1] 姚伯初, 曾维军, 陈艺中, 等.南海北部陆缘东部的地壳结构[J].地球物理学报, 1994, 37(1):27-35. doi: 10.3321/j.issn:0001-5733.1994.01.004

    CrossRef Google Scholar

    [2] 于鹏, 王家林, 钟慧智, 等.琼东南盆地基底结构综合地球物理研究[J].中国海上油气(地质), 1999, 13(6):443-450.

    Google Scholar

    [3] 张迎朝, 徐新德, 甘军, 等.琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J].地质学报, 2017, 91(7):1620-1633. doi: 10.3969/j.issn.0001-5717.2017.07.013

    CrossRef Google Scholar

    [4] 谢玉洪.南海北部自营深水天然气勘探重大突破及其启示[J].天然气工业, 2014, 34(10):1-8. doi: 10.3787/j.issn.1000-0976.2014.10.001

    CrossRef Google Scholar

    [5] 许怀智, 蔡东升, 孙志鹏, 等.琼东南盆地中央峡谷沉积充填特征及油气地质意义[J].地质学报, 2012, 86(4):641-650. doi: 10.3969/j.issn.0001-5717.2012.04.010

    CrossRef Google Scholar

    [6] 许怀智, 张迎朝, 林春明, 等.琼东南盆地中央峡谷天然气成藏特征及其主控因素[J].地质学报, 2014, 88(9):1741-1752.

    Google Scholar

    [7] 龚再升, 李思田.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社, 1997:1-126.

    Google Scholar

    [8] 雷超, 任建业, 李绪深, 等.琼东南盆地深水区结构构造特征与油气勘探潜力[J].石油勘探与开发, 2011, 38(5):560-569.

    Google Scholar

    [9] 胡见义.石油地质学前缘[M].北京:石油工业出版社, 2002:96-143.

    Google Scholar

    [10] 张功成.南海北部陆坡深水区构造演化及其特征[J].石油学报, 2010, 31(4):528-541.

    Google Scholar

    [11] 能源, 吴景富, 漆家福, 等.南海北部深水区新生代盆地三层结构及其构造演化[J].地质学报, 2013, 87(3):403-414.

    Google Scholar

    [12] Taylor B, Hayes D E. Origin and History of the South China Sea Basin[M].Washington D C:American Geophysical Union Geophysical Monograph, 1983, 27:23-56.

    Google Scholar

    [13] Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relation to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J].Geology, 1995, 23:719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    CrossRef Google Scholar

    [14] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J].Geological Society of London Special Publications, 1986, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07

    CrossRef Google Scholar

    [15] Hayes D E. The tectonic and geological evolution of Southeast Asia Seas and islands[M].Washington D C:American Geophysical Union Geophysical Monograph, 1980, 23:89-104.

    Google Scholar

    [16] 周蒂, 陈汉宗, 吴世敏, 等.南海的右行陆缘裂解成因[J].地质学报, 2002, 76(2):180-190.

    Google Scholar

    [17] Rangin C, Klein M, Roques D, et al. The red river fault system in the Tonkin gulf, Vietnam[J]. Tectonophysics, 1995, 243(3/4):209-222.

    Google Scholar

    [18] 孙珍, 钟志洪, 周蒂.莺歌海盆地构造演化与强烈沉降机制的分析和模拟[J].地球科学, 2007, 32(3):347-356.

    Google Scholar

    [19] 刘新宇.陵水13-2构造地层与古水深综合分析[R].湛江: 中海石油(中国)有限公司湛江分公司南海西部石油研究院, 2015.

    Google Scholar

    [20] 梁刚, 甘军, 李兴.琼东南盆地陵水凹陷天然气成因类型及来源[J].中国海上油气, 2015, 27(4):47-53.

    Google Scholar

    [21] 王子嵩, 刘震, 王振峰, 等.琼东南盆地深水区中央坳陷带异常压力分布特征[J].地球学报, 2014, 35(3):355-364.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(477) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint