2017 Vol. 33, No. 1
Article Contents

LUO Di, CAI Feng. SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN[J]. Marine Geology Frontiers, 2017, 33(1): 1-10. doi: 10.16028/j.1009-2722.2017.01001
Citation: LUO Di, CAI Feng. SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN[J]. Marine Geology Frontiers, 2017, 33(1): 1-10. doi: 10.16028/j.1009-2722.2017.01001

SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN

More Information
  • Fluid escape pipes, which are defined hereby as the highly localized vertical to sub-vertical pathways of focused fluid venting from some underlying source region, are developed widely in sedimentary basins of a continental margin. In seismic protiles, a fluid escape pipe can be divided into three components: root zone, leakage zone and pipe terminus. There are many types of fluid escape pathways and their components because of the difference in forming mechanisms, sources and fluid types. Therefore, Fluid escape pipes of different origin have different seismic characteristics. Hydraulic fracturing is frequently proposed as the mechanism for pipe formation. However, with the development of seismic exploration, we find out that hydraulic fracturing only is not enough to explain the formation mechanism of all types of pipes. There are other forming mechanisms including erosive fluidization, local subsurface volume loss collapse and syn-sedimentary process. The paper described the seismic characteristics of different pipes from the perspective of the three components of a fluid escape pipe. The formation processes of the four kinds of genetic mechanisms are also discussed in details.

  • 加载中
  • [1] Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution?[J]. Marine Geology, 2012, 332-334: 89-108. doi: 10.1016/j.margeo.2012.07.006

    CrossRef Google Scholar

    [2] Cartwright J. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J]. Journal of the Geological Society, 2007, 164: 881-893. doi: 10.1144/0016-76492006-143

    CrossRef Google Scholar

    [3] Huuse M. Jackson C A L, Van Rensbergen P, et al. Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview[J]. Basin Research, 2010, 22(4): 342-360. doi: 10.1111/j.1365-2117.2010.00488.x

    CrossRef Google Scholar

    [4] Lee H Y, Kimw W, Koo N H, et al. Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable[J]. Journal of Applied Geophysics, 2014, 105: 203-212. doi: 10.1016/j.jappgeo.2014.03.021

    CrossRef Google Scholar

    [5] Hustoft S, Mienert J, Bünz S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 2007, 245(1-4): 89-106. doi: 10.1016/j.margeo.2007.07.004

    CrossRef Google Scholar

    [6] L seth H, Wensaas L, Arntsen B, et al. 1 000 m long gas blow-out pipes[C]//63rd Conference & Technical Exhibition, 2001: 524.

    Google Scholar

    [7] Heggland R. Detection of gas migration from a deep source by the use of exploration 3D seismic data[J]. Marine Geology, 1997, 137(1-2): 41-47. doi: 10.1016/S0025-3227(96)00077-1

    CrossRef Google Scholar

    [8] Gay A, Lopez M, Berndt C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin[J]. Marine Geology, 2007, 244(1-4): 68-92. doi: 10.1016/j.margeo.2007.06.003

    CrossRef Google Scholar

    [9] Løseth H, Gading M, Wensaas L. Hydrocarbon leakage interpreted on seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008

    CrossRef Google Scholar

    [10] Kang N K, Yoo D G, Yi B Y, et al. Distribution and origin of seismic chimneys associated with gas hydrate using 2D multi-channel seismic reflection and well log data in the Ulleung Basin, East Sea[J]. Quaternary International, 2015.

    Google Scholar

    [11] Sun Y, Wu S, Dong D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 2012, 311-314: 32-40. doi: 10.1016/j.margeo.2012.04.003

    CrossRef Google Scholar

    [12] Sun Q, Wu S, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003

    CrossRef Google Scholar

    [13] Sun Q, Cartwright J, Wu S, et al. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse[J]. Marine Geology, 2013, 337: 171-181. doi: 10.1016/j.margeo.2013.03.002

    CrossRef Google Scholar

    [14] Bertoni C, Cartwright J A. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean[J]. Journal of the Geological Society, 2005, 162(6): 909-926. doi: 10.1144/0016-764904-126

    CrossRef Google Scholar

    [15] 孙启良.南海北部深水盆地流体逸散系统与沉积物变形[D].青岛: 中国科学院研究生院(海洋研究所), 2011.

    Google Scholar

    [16] L seth H, Wensaas L, Arntsen B, et al. 1 000 m long gas blow-out pipes[J]. Marine and Petroleum Geology, 2011, 28(5): 1047-1060. doi: 10.1016/j.marpetgeo.2010.10.001

    CrossRef Google Scholar

    [17] Berndt C, Bünz S, Mienert J M. Polygonal fault systems on the mid-Norwegian margin: a long-term source for fluid flow[J]. Geological Society, London, Special Publications, 2003, 216: 283-290. doi: 10.1144/GSL.SP.2003.216.01.18

    CrossRef Google Scholar

    [18] Gorman A R, Holbrook W S, Hornbach M J, et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province[J]. Geology, 2002, 30(4): 327-330.

    Google Scholar

    [19] Davies R J, Clarke A L. Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania[J]. Geology, 2010, 38(1): 963-966.

    Google Scholar

    [20] Hustoft S, Bunz S, Mienert J. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway[J]. Basin Research, 2010, 22(4): 465-480.

    Google Scholar

    [21] Cartwright J, Santamarina C. Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis[J]. Marine and Petroleum Geology, 2015, 65: 126-140. doi: 10.1016/j.marpetgeo.2015.03.023

    CrossRef Google Scholar

    [22] Moss J L, Cartwright J. 3D seismic expression of km-scale fluid escape pipes from offshore Namibia[J]. Basin Research, 2010, 2010(22): 481-501.

    Google Scholar

    [23] Rensbergen P V, Rabaute A, Colpaert A, et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. International Journal of Earth Sciences, 2007, 96(1): 185-197.

    Google Scholar

    [24] Karstens J, Berndt C. Seismic chimneys in the Southern Viking Graben-Implications for palaeo fluid migration and overpressure evolution[J]. Earth and Planetary Science Letters, 2015, 412: 88-100. doi: 10.1016/j.epsl.2014.12.017

    CrossRef Google Scholar

    [25] Sun Z, Wei H, Zhang X, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    CrossRef Google Scholar

    [26] Netzeband G L, Krabbenhoeft A, Zillmer M, et al. The structures beneath submarine methane seeps: Seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand[J]. Marine Geology, 2010, 272(1-4): 59-70. doi: 10.1016/j.margeo.2009.07.005

    CrossRef Google Scholar

    [27] Moss J L, Cartwright J. The spatial and temporal distribution of pipe formation, offshore Namibia[J]. Marine and Petroleum Geology, 2010, 27(6): 1216-1234. doi: 10.1016/j.marpetgeo.2009.12.013

    CrossRef Google Scholar

    [28] Van Rensbergen P, Rabaute A, Colpaert A, et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. International Journal of Earth Sciences, 2007, 96(1): 185-197.

    Google Scholar

    [29] Plaza-Faverola A, Bünz S, Mienert J. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles[J]. Earth and Planetary Science Letters, 2011, 305(3-4): 297-308. doi: 10.1016/j.epsl.2011.03.001

    CrossRef Google Scholar

    [30] Kopf A J. Significance of mud volcanism[J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52.

    Google Scholar

    [31] 何永垚, 王英民, 许翠霞, 等.珠江口盆地深水区白云凹陷气烟囱特征及成藏模式[J].海相油气地质, 2012(3): 62-66. doi: 10.3969/j.issn.1672-9854.2012.03.009

    CrossRef Google Scholar

    [32] Chu H, Sun Y, Qin K, et al. Application of small-scale array high-resolution multi-channel seismic to gas hydrates exploration (in chinese)[J]. Marine Geology Frontiers, 2015, 31(6): 50-54.

    Google Scholar

    [33] Cathles L M, Su Z, Chen D. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration[J]. Marine and Petroleum Geology, 2010, 27(1): 82-91. doi: 10.1016/j.marpetgeo.2009.09.010

    CrossRef Google Scholar

    [34] Dondurur D, Cifci G, Drahor M G, et al. Acoustic evidence of shallow gas accumulations and active pockmarks in the zmir Gulf, Aegean sea[J]. Marine and Petroleum Geology, 2011, 28(8): 1505-1516. doi: 10.1016/j.marpetgeo.2011.05.001

    CrossRef Google Scholar

    [35] Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 2011, 279(1-4): 111-127. doi: 10.1016/j.margeo.2010.10.016

    CrossRef Google Scholar

    [36] Hansen J P V, Cartwright J A, Huuse M, et al. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid-Norway[J]. Basin Research, 2005, 17(1): 123-139. doi: 10.1111/j.1365-2117.2005.00257.x

    CrossRef Google Scholar

    [37] Davies R J, Mathias S A, Moss J, et al. Hydraulic fractures: How far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1): 1-6. doi: 10.1016/j.marpetgeo.2012.04.001

    CrossRef Google Scholar

    [38] 孙启良, 吴时国, 陈端新, 等.南海北部深水盆地流体活动系统及其成藏意义[J].地球物理学报, 2014, 57(12): 4052-4062. doi: 10.6038/cjg20141217

    CrossRef Google Scholar

    [39] Harrington J F, Noy D J, Horseman S T, et al. Laboratory Study of Gas and Water Flow in the Nordland Shale, Sleipner, North Sea[J]. AAPG Studies in Geology, 2009, 59:521-543.

    Google Scholar

    [40] Nermoen A, Galland O, Jettestuen E, et al. Experimental and analytic modeling of piercement structures[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10): B10202. doi: 10.1029/2010JB007583

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(1213) PDF downloads(48) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint