Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 2
Article Contents

WANG Kunyang, DU Gu, WANG Guan, HE Jiale. The Morphological Characteristics of Clay Minerals in a Tight Sandstone Reservoir by Atomic Force Microscopy[J]. Rock and Mineral Analysis, 2025, 44(2): 245-253. doi: 10.15898/j.ykcs.202404040075
Citation: WANG Kunyang, DU Gu, WANG Guan, HE Jiale. The Morphological Characteristics of Clay Minerals in a Tight Sandstone Reservoir by Atomic Force Microscopy[J]. Rock and Mineral Analysis, 2025, 44(2): 245-253. doi: 10.15898/j.ykcs.202404040075

The Morphological Characteristics of Clay Minerals in a Tight Sandstone Reservoir by Atomic Force Microscopy

More Information
  • Clay minerals, as one of the main components of unconventional oil and gas reservoirs, have significant implications for the evaluation of unconventional oil and gas reservoirs in terms of their fine characterization of nano/sub-nano morphological features. By using atomic force microscopy (AFM) micro-area analysis technology, the problem of secondary modification of nano-pore structure caused by the conductive film in the pretreatment process of electron microscopy was solved; it made up for the defect that electron microscopy requires the sample to be conductive and can directly observe the morphological characteristics of the sample. Here, it was observed through AFM, that in the late diagenetic stage of the tight sandstone of the Xujiahe Formation in western Sichuan, some clay minerals developed parallel stepped stripes, with a large number of nano-pores formed at the concave angles on both sides of the steps, which were the main components of inorganic pores. Secondly, clay minerals had the same diagenetic evolution sequence, but their crystal morphologies were different, indicating that there was a spatial coupling relationship between their morphological features and diagenesis. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202404040075.

  • 加载中
  • [1] 叶荣, 涂光炽, 马喆生, 等. 热液矿床矿物微形貌与晶体生长环境研究[J]. 地学前缘, 2005, 12(2): 240−246. doi: 10.3321/j.issn:1005-2321.2005.02.026

    CrossRef Google Scholar

    Ye R, Tu G Z, Ma Z S, et al. The surface micromorphology of minerals in hydrothermal ore deposits and growth environments of crystal[J]. Earth Science Frontiers, 2005, 12(2): 240−246. doi: 10.3321/j.issn:1005-2321.2005.02.026

    CrossRef Google Scholar

    [2] 陈光远, 孙岱生. 成因矿物学找矿矿物学新进展[M]. 北京: 原子能出版社, 1998: 12−16.

    Google Scholar

    Chen G Y, Sun D S. New development in genetic mineralogy and prospecting mineralogy[M]. Beijing: Atomic Energy Press, 1998: 12−16.

    Google Scholar

    [3] 陈光远, 鲁安怀. 矿物成分标型继承性与金矿矿质来源[J]. 地学前缘, 1994, 1(3−4): 204−209. doi: 10.3321/j.issn:1005-2321.1994.04.025

    CrossRef Google Scholar

    Chen G Y, Lu A H. Chemical inheritance of mineral typomorphism and source of gold[J]. Earth Science Frontiers, 1994, 1(3−4): 204−209. doi: 10.3321/j.issn:1005-2321.1994.04.025

    CrossRef Google Scholar

    [4] 王坤阳, 杜谷. 利用原子力显微镜与能谱-扫描电镜研究页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(6): 839−846. doi: 10.15898/j.cnki.11-2131/td.202004180053

    CrossRef Google Scholar

    Wang K Y, Du G. Study on the pore structure characteristics of shale by atomic force microscope and energy spectrum-scanning electron microscope[J]. Rock and Mineral Analysis, 2020, 39(6): 839−846. doi: 10.15898/j.cnki.11-2131/td.202004180053

    CrossRef Google Scholar

    [5] 王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235−243. doi: 10.15898/j.cnki.11-2131/td.201612210188

    CrossRef Google Scholar

    Wang Y, Wang L H, Wang J Q, et al. Three-dimension characterization of organic matter pore structures of shale using focused ion beam-scanning electron microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235−243. doi: 10.15898/j.cnki.11-2131/td.201612210188

    CrossRef Google Scholar

    [6] 许谊, 徐毓娴, 惠梅, 等. 微分相衬干涉显微镜定量测量表面形貌[J]. 光学精密工程, 2001, 9(3): 227−230. doi: 10.3321/j.issn:1004-924X.2001.03.006

    CrossRef Google Scholar

    Xu Y, Xu Y X, Hui M, et al. Quantitative surface topography determination by differential interference contrast microscopy[J]. Optics and Precision Engineering, 2001, 9(3): 227−230. doi: 10.3321/j.issn:1004-924X.2001.03.006

    CrossRef Google Scholar

    [7] Barty A, Nugent K A, Paganin D, et al. Quantitative optical phase microscopy[J]. Optics Letters, 1998, 23(11): 817−819. doi: 10.1364/OL.23.000817

    CrossRef Google Scholar

    [8] Liao L B, Li S Z. Effect of SPM scanning range on the micromorphology parameters[J]. International Journal of Minerals, Metallurgy and Materials, 1995, 5(1): 36−38.

    Google Scholar

    [9] 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260−269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    CrossRef Google Scholar

    Qi M H, Li J J, Cao Q. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260−269. doi: 10.15898/j.cnki.11-2131/td.201901160008

    CrossRef Google Scholar

    [10] 朱炎铭, 王阳, 陈尚斌, 等. 页岩储层孔隙结构多尺度定性-定量综合表征: 以上扬子海相龙马溪组为例[J]. 地学前缘, 2016, 23(1): 154−163. doi: 10.13745/j.esf.2016.01.01

    CrossRef Google Scholar

    Zhu Y M, Wang Y, Chen S B, et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs: A case study of Longmaxi Formation in the upper Yangze area[J]. Earth Science Frontiers, 2016, 23(1): 154−163. doi: 10.13745/j.esf.2016.01.01

    CrossRef Google Scholar

    [11] Klaver J, Desbois G, Urai J L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103: 12−25. doi: 10.1016/j.coal.2012.06.012

    CrossRef Google Scholar

    [12] 黄振凯, 陈建平, 王义军, 等. 微米CT在烃源岩微观结构表征方面的应用[J]. 石油实验地质, 2016, 38(3): 418−422. doi: 10.11781/sysydz201603418

    CrossRef Google Scholar

    Huang Z K, Chen J P, Wang Y J, et al. Application of micron CT in the characterization of microstructure in source rocks[J]. Petroleum Geology & Experiment, 2016, 38(3): 418−422. doi: 10.11781/sysydz201603418

    CrossRef Google Scholar

    [13] Gratz A J, Hillner P E. Poisoning of calcite crystal growth viewed in the atomic force microscope (AFM)[J]. Journal of Crystal Growth, 1993, 129(3): 789−793. doi: 10.1016/0022-0248(93)90515-X

    CrossRef Google Scholar

    [14] 姚素平, 焦堃, 张科, 等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报, 2011, 56(22): 1820−1827. doi: 10.1360/csb2011-56-22-1820

    CrossRef Google Scholar

    Yao S P, Jiao K, Zhang K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820−1827. doi: 10.1360/csb2011-56-22-1820

    CrossRef Google Scholar

    [15] Hochella M F, Jr Eggleston C M, Elings V B, et al. Mineralogy in two dimensions: Scanning tunneling microscopy of semiconducing minerals with implications for geochemical reactivity[J]. American Mineralogist, 1989, 74: 1233−1246.

    Google Scholar

    [16] Friedbacher G, Hansma P K. Imaging powders with the atomic force microscope: From biominerals to commercial materials[J]. Science, 1991, 253: 1261−1262. doi: 10.1126/science.253.5025.1261

    CrossRef Google Scholar

    [17] Jr Eggleston C M, Hochella M F. Scanning tunneling microscope of sulfide surface[J]. Geochimica et Cosmochimica Acta, 1990, 54: 1551−1517. doi: 10.1016/0016-7037(90)90176-L

    CrossRef Google Scholar

    [18] Johnson P D, Eggleston C M, Hochella M F. Imaging molecular-scale structure and microtopography of hematite with the atomic force microscope[J]. American Mineralogist, 1991, 76: 1442−1445.

    Google Scholar

    [19] 廖立兵, 马喆生, 施倪承. 扫描隧道显微镜和原子力显微镜在矿物学研究中的应用现状及前景[J]. 现代地质, 1993, 7(4): 5.

    Google Scholar

    Liao L B, Ma Z S, Shi N C. Application status and prospect of scanning tunneling microscope and atomic force microscope in mineralogy research[J]. Geoscience, 1993, 7(4): 5.

    Google Scholar

    [20] 孙全力, 孙晗森, 贾趵, 等. 川西须家河组致密砂岩储层绿泥石成因及其优质储层关系[J]. 石油与天然气地质, 2012, 33(5): 751−757. doi: 10.11743/ogg20120512

    CrossRef Google Scholar

    Sun Q L, Sun H S, Jia B, et al. Genesis of chlorite in tight sandstone reservoirs of Xujiahe Formation in western Sichuan and its relationship with high-quality reservoirs[J]. Oil & Gas Geology, 2012, 33(5): 751−757. doi: 10.11743/ogg20120512

    CrossRef Google Scholar

    [21] 周张健. 蒙脱石伊利石化的控制因素、转化机制及其转化模型的研究综述[J]. 地质科技情报, 1994, 13(4): 41−46.

    Google Scholar

    Zhou Z J. Review on control factors, transformation mechanism and transformation model of montmorillonite illization[J]. Geological Science and Technology Bulletin, 1994, 13(4): 41−46.

    Google Scholar

    [22] 李胜荣, 许虹, 申俊峰, 等. 结晶学与矿物学[M]. 北京: 地质出版社, 2008: 9−18.

    Google Scholar

    Li S R, Xu H, Shen J F, et al. Crystallography and mineralogy[M]. Beijing: Geological Publishing House, 2008: 9−18.

    Google Scholar

    [23] 潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社, 1993: 15−26.

    Google Scholar

    Pan Z L. Crystallography and mineralogy [M]. Beijing: Geological Publishing House, 1993: 15−26.

    Google Scholar

    [24] 王文魁, 王继扬, 赵珊茸, 等. 晶体形貌学[M]. 北京: 中国地质大学出版社, 2001: 22−27.

    Google Scholar

    Wang W K, Wang J Y, Zhao S R, et al. Crystal morphology[M]. Beijing: China University of Geosciences Press, 2001: 22−27.

    Google Scholar

    [25] 张天乐, 王宗良. 中国粘土矿物的电子显微研究[M]. 北京: 地质出版社, 1978: 33−41.

    Google Scholar

    Zhang T L, Wang Z L. Electron microscopy of clay minerals in China [M]. Beijing: Geological Publishing House, 1978: 33−41.

    Google Scholar

    [26] 徐春华, 朱光, 刘国生, 等. 伊利石结晶度在恢复地层剥蚀量中的应用—伊利石结晶度在恢复地层剥蚀量中的应用——以合肥盆地安参1井白垩系剥蚀量的恢复为例[J]. 地质科技情报, 2005, 24(1): 41−44.

    Google Scholar

    Xu C H, Zhu G, Liu G S, et al. Application of crystallinity of illite to recover denudation quantity: An example of Cretaceous denudation quantity recovery of Well Ancan 1 in Hefei Basin,Anhui Province[J]. Geological Science and Technology, 2005, 24(1): 41−44.

    Google Scholar

    [27] 张有瑜, 罗修全. 油气储层自生伊利石K-Ar同位素年代学研究现状与展望[J]. 石油与天然气地质, 2004, 25(2): 231−236. doi: 10.3321/j.issn:0253-9985.2004.02.020

    CrossRef Google Scholar

    Zhang Y Y, Luo X Q. K-Ar isotopic chronological study of authigenic illite in reservoirs[J]. Oil & Gas Geology, 2004, 25(2): 231−236. doi: 10.3321/j.issn:0253-9985.2004.02.020

    CrossRef Google Scholar

    [28] 达比D. 伊利石年龄记录着石油盆地中深部流体运动[J]. 地质科技动态, 1998(9): 8−13.

    Google Scholar

    Da B. Illite age records deep fluid movement in petroleum basin[J]. Geological Science and Technology Trends, 1998(9): 8−13.

    Google Scholar

    [29] 车忱, 杨忠芳, 季峻峰. 沉积岩中成岩伊利石年龄测定研究进展[J]. 地球科学进展, 2002, 17(5): 693−698. doi: 10.3321/j.issn:1001-8166.2002.05.010

    CrossRef Google Scholar

    Che C, Yang Z F, Ji J F. Research progress in dating of authegenic illite in sedimentary[J]. Advance in Earth Science, 2002, 17(5): 693−698. doi: 10.3321/j.issn:1001-8166.2002.05.010

    CrossRef Google Scholar

    [30] 杨瑞, 田元, 李晓波, 等. 章村伊利石矿中主要粘土矿物的微观形貌特征及成因分析[J]. 地球科学前沿, 2020, 10(2): 7. doi: 10.12677/AG.2020.102008

    CrossRef Google Scholar

    Yang R, Tian Y, Li X B, et al. Micromorphologic characteristics and genetic analysis of main clay minerals in Zhangcun illite mine[J]. Earth Science Frontiers, 2020, 10(2): 7. doi: 10.12677/AG.2020.102008

    CrossRef Google Scholar

    [31] 刘钰洋, 潘懋, 刘诗琦, 等. 鄂尔多斯盆地白于山井网加密区延长组长4+5特低渗储层沉积特征和储层物性分析[J]. 北京大学学报(自然科学版), 2018, 54(5): 1028−1039. doi: 10.13209/j.0479-8023.2018.045

    CrossRef Google Scholar

    Liu Y Y, Pan M, Liu S Q, et al. Comprehensive depositional system and reservoir characterization study of Chang 4+5 reservoir of Yanchang Group, infill well region in Baiyushan area, Ordos Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 1028−1039. doi: 10.13209/j.0479-8023.2018.045

    CrossRef Google Scholar

    [32] Ahn J H, Peacor D R. Transmition and analytical electron microscopy of the smectite to illite transition[J]. Clay and Clay Minerals, 1986, 34(2): 165−179. doi: 10.1346/CCMN.1986.0340207

    CrossRef Google Scholar

    [33] 李嵘, 吕正祥, 叶素娟. 川西拗陷须家河组致密砂岩成岩作用特征及其对储层的影响[J]. 成都理工大学学报(自然科学版), 2011, 38(2): 147−155. doi: 10.3969/j.issn.1671-9727.2011.02.006

    CrossRef Google Scholar

    Li R, Lyu Z X, Ye S J. Impact of diagenesis on reservoir-quality evolution in the upper Triassic Xujiahe tight sandstones,West Sichuan,China[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2011, 38(2): 147−155. doi: 10.3969/j.issn.1671-9727.2011.02.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(147) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint