Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 6
Article Contents

WANG Baoli, ZHANG Yijun, ZHANG Yuhang, CHEN Yan. Research Progress of Biochar Based Materials and Their Applications Using Electrochemical Sensors[J]. Rock and Mineral Analysis, 2024, 43(6): 967-981. doi: 10.15898/j.ykcs.202403170058
Citation: WANG Baoli, ZHANG Yijun, ZHANG Yuhang, CHEN Yan. Research Progress of Biochar Based Materials and Their Applications Using Electrochemical Sensors[J]. Rock and Mineral Analysis, 2024, 43(6): 967-981. doi: 10.15898/j.ykcs.202403170058

Research Progress of Biochar Based Materials and Their Applications Using Electrochemical Sensors

More Information
  • Electrochemical sensors have become a research hotspot in the field of analytical chemistry due to their high sensitivity, good selectivity, and fast reaction rate. Using biochar materials to construct electrochemical sensors is a low cost, accessible and effective route to achieve excellent detection performance. This review summarizes the research progress of biochar based electrochemical sensors in the detection of environmental pollutants, drugs and biomolecules on the basis of briefly describing the synthesis methods and the structural properties of biochar-based materials. The synthesized biochar and the corresponding constructed sensors indicate that electrochemical sensors hold significant advantages in high-precision and high-stability chemical-signal testing. Further research will focus on optimizing the structure of carbon materials, regulating the composition of them, and preparing high-performance biochar-based materials that are more suitable for electrochemical sensors, so as to reduce the detection limit and improve the sensitivity. Besides, it is urgent to fabricate portable sensors based on biochar to determine rapid and intelligent analysis and detection, and the sensing mechanism and testing performance improvement mechanism are problems that must be deeply explored. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202403170058.

  • 加载中
  • [1] Bakker E, Telting-Diaz M. Electrochemical sensors[J]. Analytical Chemistry, 2002, 74(12): 2781−2800. doi: 10.1021/ac0202278

    CrossRef Google Scholar

    [2] 于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    Yu K N, Wang R Z, Liu D D. A review of rapid detections for emerging contaminants in ground water[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    [3] Jin C, Li M, Duan S, et al. An electrochemical sensor for direct and sensitive detection of ketamine[J]. Biosensors and Bioelectronics, 2023, 226: 115134. doi: 10.1016/j.bios.2023.115134

    CrossRef Google Scholar

    [4] Abedeen M Z, Sharma M, Kushwaha H S, et al. Sensitive enzyme-free electrochemical sensors for the detection of pesticide residues in food and water[J]. Trends in Analytical Chemistry, 2024, 176: 117729. doi: 10.1016/j.trac.2024.117729

    CrossRef Google Scholar

    [5] Jiang Y, Sima Y, Liu L, et al. Research progress on portable electrochemical sensors for detection of mycotoxins in food and environmental samples[J]. Chemical Engineering Journal, 2024: 149860. doi: 10.1016/j.cej.2024.149860

    CrossRef Google Scholar

    [6] He Q, Wang B, Liang J, et al. Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring[J]. Materials Today Advances, 2023, 17: 100340. doi: 10.1016/j.mtadv.2022.100340

    CrossRef Google Scholar

    [7] 赵志东, 何缘, 祁星瑞, 等. 基于Fe/Ni二元金属有机框架/多壁碳纳米管的电化学传感 器对芬太尼的快速检测[J]. 分析化学, 2024, 53(8): 1152−1162. doi: 10.19756/j.issn.0253-3820.231417

    CrossRef Google Scholar

    Zhao Z D, He Y, Qi X R, et al. Rapid detection of fentanyl by electrochemical sensor based on Fe/Ni binary metal-organic frameworks/multi-walled carbon nanotubes[J]. Chinese Journal of Analytical Chemistry, 2024, 53(8): 1152−1162. doi: 10.19756/j.issn.0253-3820.231417

    CrossRef Google Scholar

    [8] Liu W, Li H, Huang D, et al. Engineering α-MoO3/TiO2 heterostructures derived from MOFs/MXene hybrids for high-performance triethylamine sensor[J]. Chemical Engineering Journal, 2024, 483: 149340. doi: 10.1016/j.cej.2024.149340

    CrossRef Google Scholar

    [9] Gao P, Hussain M Z, Zhou Z, et al. Zr-based metalloporphyrin MOF probe for electrochemical detection of parathion-methyl[J]. Biosensors and Bioelectronics, 2024: 116515. doi: 10.1016/j.bios.2024.116515

    CrossRef Google Scholar

    [10] 韩梅, 张威, 贾娜, 等. 生物炭富集-电感耦合等离子体质谱法测定海水中的痕量铅铜[J]. 岩矿测试, 2024, 43(2): 281−288. doi: 10.15898/j.ykcs.202308170138

    CrossRef Google Scholar

    Hai M, Zhang W, Jia N, et al. Determination of trace lead and copper in seawater by inductively coupled plasma-mass spectrometry with coconut shell biochar enrichment[J]. Rock and Mineral Analysis, 2024, 43(2): 281−288. doi: 10.15898/j.ykcs.202308170138

    CrossRef Google Scholar

    [11] Mathew A T, Bhat V S, Supriya S, et al. TEMPO mediated electrocatalytic oxidation of pyridyl carbinol using palladium nanoparticles dispersed on biomass derived porous nanoparticles[J]. Electrochimica Acta, 2020, 354: 136624. doi: 10.1016/j.electacta.2020.136624

    CrossRef Google Scholar

    [12] Sriram G, Supriya S, Kurkuri M, et al. Efficient CO2 adsorption using mesoporous carbons from biowastes[J]. Materials Research Express, 2019, 7(1): 015605. doi: 10.1088/2053-1591/ab5f2c

    CrossRef Google Scholar

    [13] 李高帆, 徐文卓, 卫昊明, 等. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261−271. doi: 10.16258/j.cnki.1674-5906.2024.02.010

    CrossRef Google Scholar

    Li G F, Xu W Z, Wei H M, et al. Preparation of 3D porous biochar adsorbent and its adsorption behavior for phenanthrene[J]. Ecology and Environmental Sciences, 2024, 33(2): 261−271. doi: 10.16258/j.cnki.1674-5906.2024.02.010

    CrossRef Google Scholar

    [14] Blankenship L S, Mokaya R. Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity[J]. Energy & Environmental Science, 2017, 10(12): 2552−2562. doi: 10.1039/d1ee90031e

    CrossRef Google Scholar

    [15] Qiu L, Xu M, Tian W, et al. Biomass derived self-doped carbon nanosheets enable robust hole transport layers with ion buffer for perovskite solar cells[J]. ChemSusChem, e202400510.

    Google Scholar

    [16] 于嘉璐, 卢美霞, 何苗, 等. 生物炭和凹凸棒土负载纳米零价铁去除水中六价铬的性能 与机理研究[J]. 环境科学学报, 2024, 44(7): 127−136. doi: 10.13671/j.hjkxxb.2024.0143

    CrossRef Google Scholar

    Yu J L, Lu M X, He M, et al. Study on the performance and mechanism of hexavalent chromium removal from water by BC and ATP supported nano-zero-valent iron[J]. Acta Scientiae Circumstantiae, 2024, 44(7): 127−136. doi: 10.13671/j.hjkxxb.2024.0143

    CrossRef Google Scholar

    [17] Chen J, Fang K, Chen Q, et al. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors[J]. Nano Energy, 2018, 53: 337−344. doi: 10.1016/j.nanoen.2018.08.056

    CrossRef Google Scholar

    [18] Bhat V S, Supriya S, Hegde G. Review-biomass derived carbon materials for electrochemical sensors[J]. Journal of the Electrochemical Society, 2019, 167(3): 037526. doi: 10.1149/2.0262003jes

    CrossRef Google Scholar

    [19] Dong S, Yang Z, Liu B, et al. (Pd, Au, Ag) Nanoparticles decorated well-ordered macroporous carbon for electrochemical sensing applications[J]. Journal of Electroanalytical Chemistry, 2021, 897: 115562. doi: 10.1016/j.jelechem.2021.115562

    CrossRef Google Scholar

    [20] Lu Z, Li Y, Liu T, et al. A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine[J]. Chemical Engineering Journal, 2020, 389: 124417. doi: 10.1016/j.cej.2020.124417

    CrossRef Google Scholar

    [21] Yin J, Zhang H, Wang Y, et al. Crab gill–derived nanorod-like carbons as bifunctional electrochemical sensors for detection of hydrogen peroxide and glucose[J]. Ionics, 2024: 1−12. doi: 10.1007/s11581-024-05507-3

    CrossRef Google Scholar

    [22] Chang W, Zhu Y, Ma Y, et al. Silk derived Fe/N-doping porous carbon nanosheets for chloramphenicol electrochemical detection[J]. Current Analytical Chemistry, 2022, 18(9): 1017−1028. doi: 10.2174/1573411018666220426123129

    CrossRef Google Scholar

    [23] Jin B, Liu S, Jin D. Azalea petal-derived porous carbon-thionine based ratiometric electrochemical sensor for the simultaneous determination of ascorbic acid and uric acid[J]. Russian Journal of Electrochemistry, 2023, 59(12): 1151−1161. doi: 10.1134/s1023193523220032

    CrossRef Google Scholar

    [24] Sun Y, Wang X, Wu Q, et al. Use of rice straw nano-biochar to slow down water infiltration and reduce nitrogen leaching in a clayey soil[J]. Science of the Total Environment, 2024, 948: 174956. doi: 10.1016/j.scitotenv.2024.174956

    CrossRef Google Scholar

    [25] Huang C, Chen Y, Jin L, et al. Properties of biochars derived from different straw at 500℃ pyrolytic temperature: Implications for their use to improving acidic soil water retention[J]. Agricultural Water Management, 2024, 301: 108953. doi: 10.1016/j.agwat.2024.108953

    CrossRef Google Scholar

    [26] Titirici M M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews, 2010, 39(1): 103−116. doi: 10.1039/b819318p

    CrossRef Google Scholar

    [27] Yang L, Huang K, Li X, et al. Fluorescence switching sensor for sensitive detection of curcumin/Mn2+ using biomass carbon quantum dots: A combination of experimental and theoretical insights[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114533. doi: 10.1016/j.jece.2024.114533

    CrossRef Google Scholar

    [28] Xu L, Zhu C, Duan X, et al. A portable smartphone platform based on fluorescent carbon quantum dots derived from biowaste for on-site detection of permanganate[J]. New Journal of Chemistry, 2024, 48(28): 12626−12632. doi: 10.1039/d4nj01987c

    CrossRef Google Scholar

    [29] Chen Y, Guan H, Du S, et al. Biomass carbon quantum dots: Mimicking peroxidase-like activity and sensitive fluorometric and colorimetric detection of dopamine hydrochloride in meat products[J]. Food Bioscience, 2024(1): 104719. doi: 10.1016/j.fbio.2024.104719

    CrossRef Google Scholar

    [30] Silva T, Silva A D, Silva A A S, et al. One-pot hydrothermal biochar obtained from malt bagasse waste as an electrode-modifying material towards the stripping voltammetric sensing of lead[J]. Electroanalysis, 2024, 36(9): e202300425. doi: 10.1002/elan.202300425

    CrossRef Google Scholar

    [31] Sun Z, Wei H, Guo F, et al. Study on the characteristics of microwave pyrolysis of pine wood catalyzed by bimetallic catalysts prepared with microwave-assisted hydrothermal char[J]. Journal of Analytical and Applied Pyrolysis, 2024, 181: 106597. doi: 10.1016/j.jaap.2024.106597

    CrossRef Google Scholar

    [32] Liu X, Antonietti M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69: 460−466. doi: 10.1016/j.carbon.2013.12.049

    CrossRef Google Scholar

    [33] Li B, Li M, Xie X, et al. Pyrolysis of rice husk in molten lithium chloride: Biochar structure evolution and CO2 adsorption[J]. Journal of the Energy Institute, 2024, 113: 101526. doi: 10.1016/j.joei.2024.101526

    CrossRef Google Scholar

    [34] Jia H, Zhang F, Yuan Z, et al. Casein-derived nitrogen and phosphorus co-doped porous carbons via a thermochemical process of molten salt and caustic potash for supercapacitors[J]. Journal of Power Sources, 2024, 612: 234708. doi: 10.1016/j.jpowsour.2024.234708

    CrossRef Google Scholar

    [35] Cheng Z, Liu X, Diao R, et al. Structural regulation of ultra-microporous biomass-derived carbon materials induced by molten salt synergistic activation and its application in CO2 capture[J]. Chemical Engineering Journal, 2024, 486: 150227. doi: 10.1016/j.cej.2024.150227

    CrossRef Google Scholar

    [36] Egun I L, He H, Hu D, et al. Molten salt carbonization and activation of biomass to functional biocarbon[J]. Advanced Sustainable Systems, 2022, 6(12): 2200294. doi: 10.1002/adsu.202200294

    CrossRef Google Scholar

    [37] Qi X, Zhang H, Li C, et al. A simple and recyclable molten-salt route to prepare superthin biocarbon sheets based on the high water-absorbent agaric for efficient lithium storage[J]. Carbon, 2020, 157: 286−294. doi: 10.1016/j.carbon.2019.10.050

    CrossRef Google Scholar

    [38] Pang Z, Li G, Xiong X, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: A review[J]. Journal of Energy Chemistry, 2021, 61: 622−640. doi: 10.1016/j.jechem.2021.02.020

    CrossRef Google Scholar

    [39] Li Y, Luo L, Kong Y, et al. Recent advances in molecularly imprinted polymer-based electrochemical sensors[J]. Biosensors and Bioelectronics, 2024: 116018.

    Google Scholar

    [40] Liang M, Liu Y, Lu S, et al. Two-dimensional conductive MOFs toward electrochemical sensors for environmental pollutants[J]. Trends in Analytical Chemistry, 2024, 177: 117800. doi: 10.1016/j.trac.2024.117800

    CrossRef Google Scholar

    [41] Sha T, Li X, Liu J, et al. Biomass waste derived carbon nanoballs aggregation networks-based aerogels as electrode material for electrochemical sensing[J]. Sensors and Actuators B: Chemical, 2018, 277: 195−204. doi: 10.1016/j.snb.2018.09.011

    CrossRef Google Scholar

    [42] Adiraju A, Brahem A, Lu T, et al. Electrochemical enrichment of biocharcoal modified on carbon electrodes for the detection of nitrite and paraxon ethyl pesticide[J]. Journal of Composites Science, 2024, 8(6): 217. doi: 10.3390/jcs8060217

    CrossRef Google Scholar

    [43] Madhu R, Karuppiah C, Chen S M, et al. Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons[J]. Analytical Methods, 2014, 6(14): 5274−5280. doi: 10.1039/c4ay00795f

    CrossRef Google Scholar

    [44] Xu Y, Lei W, Zhang Y, et al. Bamboo fungus-derived porous nitrogen-doped carbon for the fast, sensitive determination of bisphenol A[J]. Journal of the Electrochemical Society, 2016, 164(5): B3043. doi: 10.1149/2.0021705jes

    CrossRef Google Scholar

    [45] Zhao J, Lu Z, Wang Y, et al. Cellulose-derived hierarchical porous carbon based electrochemical sensor for simultaneous detection of catechol and hydroquinone[J]. Ionics, 2024, 30(2): 1089−1100. doi: 10.1007/s11581-023-05317-z

    CrossRef Google Scholar

    [46] Mahfoz W, Shah S S, Al-Betar A R, et al. Date leaves-derived submicron/nano carbon-modified glassy carbon electrode for highly sensitive and simultaneous detection of 1-naphthol and 2-naphthol[J]. Journal of the Electrochemical Society, 2024, 171(4): 047505. doi: 10.1149/1945-7111/ad39ab

    CrossRef Google Scholar

    [47] Pan Z, Gong T, Liang P. Heavy metal exposure and cardiovascular disease[J]. Circulation Research, 2024, 134(9): 1160−1178. doi: 10.1161/circresaha.123.323617

    CrossRef Google Scholar

    [48] Xu C, Liu J, Bi Y, et al. Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (Ⅱ)[J]. Analytica Chimica Acta, 2020, 1116: 16−26. doi: 10.1016/j.aca.2020.04.033

    CrossRef Google Scholar

    [49] Valenga M G P, Gevaerd A, Marcolino-Junior L H, et al. Biochar from sugarcane bagasse: Synthesis, characterization, and application in an electrochemical sensor for copper(Ⅱ) determination[J]. Biomass and Bioenergy, 2024, 184: 107206. doi: 10.1016/j.biombioe.2024.107206

    CrossRef Google Scholar

    [50] Bressi V, Celesti C, Ferlazzo A, et al. Waste-derived carbon nanodots for fluorimetric and simultaneous electrochemical detection of heavy metals in water[J]. Environmental Science: Nano, 2024, 11(3): 1245−1258. doi: 10.1039/d3en00639e

    CrossRef Google Scholar

    [51] Sharma R, Rana D S, Gupta N, et al. Parthenium hysterophorus derived nanostructures as an efficient carbocatalyst for the electrochemical sensing of mercury(Ⅱ) ions[J]. Chemosphere, 2024, 354: 141591. doi: 10.1016/j.chemosphere.2024.141591

    CrossRef Google Scholar

    [52] Ganaie F A, Bashir A, Qureashi A, et al. SnS2 decorated biochar: A robust platform for the photocatalytic degradation and electrochemical sensing of pollutants[J]. New Journal of Chemistry, 2024, 48(16): 7111−7124.

    Google Scholar

    [53] Nguyen H H T, Kim E, Imran M, et al. Microplastic contaminants detection in aquatic environment by hydrophobic cerium oxide nanoparticles[J]. Chemosphere, 2024, 357: 141961. doi: 10.1039/d4nj00231h

    CrossRef Google Scholar

    [54] Kim S A, Kim E B, Imran M, et al. Naturally manufactured biochar materials based sensor electrode for the electrochemical detection of polystyrene microplastics[J]. Chemosphere, 2024, 351: 141151. doi: 10.1016/j.chemosphere.2024.141151

    CrossRef Google Scholar

    [55] Ateia M, Wei H, Andreescu S. Sensors for emerging water contaminants: Overcoming roadblocks to innovation[J]. Environmental Science & Technology, 2024, 58(6): 2636−2651. doi: 10.1021/acs.est.3c09889

    CrossRef Google Scholar

    [56] Kim D, Kim J M, Jeon Y, et al. Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen[J]. Sensors and Actuators B: Chemical, 2018, 259: 50−58. doi: 10.1016/j.snb.2017.12.066

    CrossRef Google Scholar

    [57] Yalikun N, Mamat X, Li Y, et al. N, S, P-triple doped porous carbon as an improved electrochemical sensor for metronidazole determination[J]. Journal of the Electrochemical Society, 2019, 166(13): B1131. doi: 10.1149/2.0321913jes

    CrossRef Google Scholar

    [58] Veerakumar P, Sangili A, Chen S M, et al. Fabrication of platinum-rhenium nanoparticle-decorated porous carbons: Voltammetric sensing of furazolidone[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3591−3605. doi: 10.1021/acssuschemeng.9b06058

    CrossRef Google Scholar

    [59] Malode S J, Joshi M, Shetti N P, et al. Biowaste-derived carbon nanomaterial-based sensor for the electrochemical analysis of mefenamic acid in the presence of CTAB[J]. Materials Today Communications, 2024, 39: 108723. doi: 10.1016/j.mtcomm.2024.108723

    CrossRef Google Scholar

    [60] Liu C, Lv L, Sun Y, et al. Specific temperature-modulated crab shell-derived porous carbon as a typical recycling material for nitrofurazone electrochemical sensor[J]. Microporous and Mesoporous Materials, 2024, 374: 113143. doi: 10.1016/j.micromeso.2024.113143

    CrossRef Google Scholar

    [61] Cheng H, Weng W, Xie H, et al. Au-Pt@ biomass porous carbon composite modified electrode for sensitive electrochemical detection of baicalein[J]. Microchemical Journal, 2020, 154: 104602. doi: 10.1016/j.microc.2020.104602

    CrossRef Google Scholar

    [62] Ai Y, Liu J, Yan L, et al. Banana peel derived biomass carbon: Multi-walled carbon nanotube composite modified electrode for sensitive voltammetric detection of baicalein[J]. Journal of the Chinese Chemical Society, 2022, 69(2): 359−365. doi: 10.1002/jccs.202100453

    CrossRef Google Scholar

    [63] Li M, Zhao Z, Liu X, et al. Novel bamboo leaf shaped CuO nanorod@ hollow carbon fibers derived from plant biomass for efficient and nonenzymatic glucose detection[J]. Analyst, 2015, 140(18): 6412−6420. doi: 10.1039/c5an00675a

    CrossRef Google Scholar

    [64] Qu P, Gong Z, Cheng H, et al. Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor[J]. RSC Advances, 2015, 5(129): 106661−106667. doi: 10.1039/c5ra22495k

    CrossRef Google Scholar

    [65] Shan B, Ji Y, Zhong Y, et al. Nitrogen-containing three-dimensional biomass porous carbon materials as an efficient enzymatic biosensing platform for glucose sensing[J]. RSC Advances, 2019, 9(44): 25647−25654. doi: 10.1039/c9ra04008k

    CrossRef Google Scholar

    [66] Padmapriya A, Thiyagarajan P, Devendiran M, et al. Electrochemical sensor based on N, P-doped carbon quantum dots derived from the banana flower bract (Musa acuminata) biomass extract for selective and picomolar detection of dopamine[J]. Journal of Electroanalytical Chemistry, 2023, 943: 117609. doi: 10.1016/j.jelechem.2023.117609

    CrossRef Google Scholar

    [67] Valenga M G P, Didek L K, Gevaerd A, et al. An eco-friendly alternative for voltammetric determination of creatinine in urine sample using copper(Ⅱ) immobilized on biochar[J]. Microchemical Journal, 2024, 200: 110489. doi: 10.1016/j.microc.2024.110489

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article Metrics

Article views(428) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint