Citation: | QIU Xiaofei, LU Shansong, TAN Juanjuan, TONG Xirun, WU Nianwen, YANG Xiaoli, SHAO Xin, LIU Fei, YANG Xiaoli. Monazite LA-ICP-MS U-Pb Dating to Constrain the Metamorphic Age of the Muzidian Gneiss Complex in the Northern Dabie Orogen[J]. Rock and Mineral Analysis, 2025, 44(1): 75-87. doi: 10.15898/j.ykcs.202403050032 |
The Muzidian gneiss complex (MGC) in the Northern Dabie Orogen is the oldest exposed rock formation in the South China block. However, there is still a lack of research on its metamorphic age and tectonic implications. LA-ICP-MS in situ U-Pb dating and trace element analysis of monazite were carried out on two gneiss samples from the MGC. The results show that most monazite grains exhibit homogeneous features with no zoning, evident depletion of HREEs and negative Eu anomalies, suggesting that they may be of metamorphic origin. The monazite U-Pb ages of the two gneiss samples are 129±1Ma and 130±1Ma, respectively, which represent the time of metamorphism of the MGC. These ages are broadly consistent with the emplacement age of the early Cretaceous granitoids in the Muzidian area, as well as the large amount of exposed migmatites in the Northern Dabie Orogen. Our study shows that the extensional collapse of the thickened continental crust and the delamination of the orogenic crustal root during the early Cretaceous of the Dabie Orogen caused contemporaneous metamorphism, migmatation, and magmatism, which constrained the tectonic regime switch time of the Northern Dabie Orogen from compression to extension to ~130Ma. The BRIEF REPORT is available for this paper at
[1] | 邱啸飞, 江拓, 吴年文, 等. 大别造山带新太古代地壳岩石和古元古代混合岩化作用——来自锆石U-Pb年代学和Hf同位素证据[J]. 地质学报, 2020, 94(3): 729−738. doi: 10.19762/j.cnki.dizhixuebao.2020131 Qiu X F, Jiang T, Wu N W, et al. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie Orogen: Evidence from zircon U-Pb age and Hf isotopes[J]. Acta Geologica Sinica, 2020, 94(3): 729−738. doi: 10.19762/j.cnki.dizhixuebao.2020131 |
[2] | Qiu X F, Tong X R, Jiang T, et al. Reworking of Hadean continental crust in the Dabie Orogen: Evidence from the Muzidian granitic gneisses[J]. Gondwana Research, 2021, 89: 119−130. doi: 10.1016/j.gr.2020.08.014 |
[3] | Tian Y, Wang W, Jin W, et al. Neoarchean granitic rocks from the Jiamiao area of the Dabie Orogen: Implications on the formation and early evolution of the Yangtze Craton[J]. Science China Earth Sciences, 2022, 65: 1568−1585. doi: 10.1007/s11430-021-9935-5 |
[4] | Wang D, Qiu X F, Carlson R W, et al. The Eoarchean Muzidian Gneiss Complex: Long-lived Hadean crustal components in the building of Archean continents[J]. Earth and Planetary Science Letters, 2023, 605: 118037. doi: 10.1016/j.jpgl.2023.118037 |
[5] | 张雅, 李全忠, 闫峻, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637−649. doi: 10.15898/j.cnki.11-2131/td.202101130005 Zhang Y, Li Q Z, Yan J, et al. Analytical conditions for U-Th-Pb dating of monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637−649. doi: 10.15898/j.cnki.11-2131/td.202101130005 |
[6] | 邱啸飞, 杨红梅, 赵小明, 等. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义[J]. 地球科学, 2019, 44(2): 415−426. doi: 10.3799/dqkx.2018.198 Qiu X F, Yang H M, Zhao X M, et al. Neoarchean granitic gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and tectonic implications[J]. Earth Science, 2019, 44(2): 415−426. doi: 10.3799/dqkx.2018.198 |
[7] | 陈妍, 潘家永, 钟福军, 等. 粤北长江铀田花岗岩独居石U-Pb同位素定年及其地质意义[J]. 岩矿测试, 2022, 41(1): 1−13. doi: 10.15898/j.cnki.11-2131/td.202103120038 Chen Y, Pan J Y, Zhong F J, et al. U-Pb isotopic dating of monazite in granite from the Changjiang uranium orefield, Northern Guangdong Province and its geological significance[J]. Rock and Mineral Analysis, 2022, 41(1): 1−13. doi: 10.15898/j.cnki.11-2131/td.202103120038 |
[8] | 杨世平, 杨细华, 李安邦, 等. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因[J]. 岩矿测试, 2022, 41(4): 541−553. doi: 10.15898/j.cnki.11-2131/td.202110240154 Yang S P, Yang X H, Li A B, et al. Study on geochemical characteristics and REE mineralization of S-enriched monazite in the Dabie Orogenic belt by electron probe microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541−553. doi: 10.15898/j.cnki.11-2131/td.202110240154 |
[9] | Wu Y B, Zheng Y F, Zhang S B, et al. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting[J]. Journal of Metamorphic Geology, 2007, 25: 991−1009. doi: 10.1111/j.1525-1314.2007.00738.x |
[10] | Tomascak P B, Eirik J K, Richard J W, et al. U-Pb monazite geochronology of granitic rocks from Maine: Implications for late Paleozoic tectonics in the Northern Appalachians[J]. The Journal of Geology, 1996, 104: 185−195. doi: 10.2307/30064163 |
[11] | Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J]. Chemical Geology, 2008, 247: 133−153. doi: 10.1016/j.chemgeo.2007.10.016 |
[12] | Ludwig K R. ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, California)[M]. Berkeley: BGC Special Publication, 2003: 1−55. |
[13] | Chen L, Hofstra A H, Li X H, et al. High resolution SIMS U-Th-Pb geochronology of small size (<5μm) monazite: Constraints on the timing of Qiuling sediment-hosted gold deposit, South Qinling Orogen, Central China[J/OL]. American Mineralogist, 2024. DOI: 10.2138/am-2023-9210 |
[14] | Wu L G, Li X H, Ling X X, et al. Further characterization of the RW-1 monazite: A new working reference material for oxygen and neodymium isotopic microanalysis[J]. Minerals, 2019, 9: 583. doi: 10.3390/min9100583 |
[15] | Gratz R, Heinrich W. Monazite-xenotime thermo-barometry: Experimental calibration of the miscibility gap in the binary system CePO4-YPO4[J]. American Mineralogist, 1997, 82: 772−780. doi: 10.2138/am-1997-7-816 |
[16] | Wang H, Yang J H, Kröner A, et al. Extensive magmatism and metamorphism at ca. 3.2Ga in the Eastern Kaapvaal Craton[J]. Precambrian Research, 2020, 351: 105952. doi: 10.1016/j.precamres.2020.105952 |
[17] | Wang J H, Sun M, Deng S X, et al. Geochronological constraints on the timing of migmatization in the Dabie Shan, East-Central China[J]. European Journal of Mineralogy, 2002, 14: 513−524. doi: 10.1127/0935-1221/2002/0014-0513 |
[18] | He Y, Li S, Hoefs J, et al. Sr-Nd-Pb isotopic compositions of early Cretaceous granitoids from the Dabie Orogen: Constraints on the recycled lower continental crust[J]. Lithos, 2013, 156-159: 204−217. doi: 10.1016/j.lithos.2012.10.011 |
[19] | Huang R, Zhu L, Xu Y, et al. Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination[J]. Tectonophysics, 2014, 636: 286−292. doi: 10.1016/j.tecto.2014.09.001 |
[20] | Jiang G, Zhang G, Zhao D, et al. Mantle dynamics and Cretaceous magmatism in East-Central China: Insight from teleseismic tomograms[J]. Tectonophysics, 2015, 664: 256−268. doi: 10.1016/j.tecto.2015.09.019 |
[21] | Mao J, Liu P, Goldfarb R J, et al. Cretaceous large–scale metal accumulation triggered by post–subductional large–scale extension, East Asia[J]. Ore Geology Reviews, 2021, 136: 104270. doi: 10.1016/j.oregeorev.2021.104270 |
[22] | 胡俊良, 刘劲松, 刘阿睢, 等. 北大别木子店岩体斑状黑云二长花岗岩的年龄与成因: 锆石U-Pb定年、Hf同位素与稀土元素证据[J]. 矿物岩石地球化学通报, 2018, 37(4): 750−759. doi: 10.19658/j.issn.1007-2802.2018.37.060 Hu J L, Liu J S, Liu A S, et al. Age and petrogenesis of the porphyritic biotite monzogranite in the Muzidian Complex in Northern Dabie Mountains: Evidences from zircon U-Pb dating, Hf isotopes and REE geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 750−759. doi: 10.19658/j.issn.1007-2802.2018.37.060 |
[23] | Li W T, Jiang S Y, Fu B, et al. Zircon Hf O isotope and magma oxidation state evidence for the origin of early Cretaceous granitoids and porphyry Mo mineralization in the Tongbai—Hong’an—Dabie Orogens, Eastern China[J]. Lithos, 2021, 389−399: 106281. doi: 10.1016/j.lithos.2021.106281 |
[24] | 江拓, 邱啸飞, 卢山松, 等. 桐柏—大别造山带南缘七尖峰花岗岩成因: 来自地球化学, 锆石U-Pb年代学和Hf同位素的制约[J]. 中国地质, 2020, 47(4): 1109−1126. doi: 10.12029/gc20200414 Jiang T, Qiu X F, Lu S S, et al. Petrogenesis of the Qijianfeng granite in Southern Tongbai—Dabie Orogenic belt: Constraints from geochemistry, zircon U-Pb age and Hf isotope[J]. Geology in China, 2020, 47(4): 1109−1126. doi: 10.12029/gc20200414 |
(a) Schematic geological map of the Qinling—Dabie—Sulu orogenic belt; (b) Schematic geological map of the Muzidian area and sampling location (Modified by Reference [2])
Field outcrop and photomicrographs for Muzidian gneiss complex: Pl—Plagioclase; Hb—Hornblende; Bi—Biotite; Q—Quartz
BSE images of representative monazite from Muzidian gneiss complex in the Northern Dabie Orogen: (a) Amphibole-plagioclase gneiss (sample 22MW11); (b) Felsic gneiss (sample 22MW01).
U-Pb concordia of monazite from Muzidian gneiss complex in the Northern Dabie Orogen: (a) Amphibole-plagioclase gneiss (sample 22MW11); (b) Felsic gneiss (sample 22MW01).
REE patterns of monazite from Muzidian gneiss complex in the Northern Dabie Orogen
Discrimination of monazite with igneous and metamorphic origins (Modified by Reference[15])