Citation: | QI Jinjie, YU Hongxia, XU Qinghong, YUAN Yonghai, YANG Feng, ZHANG Huiping. Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples[J]. Rock and Mineral Analysis, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174 |
The thallium (Tl) isotope system can be utilized to track various geological processes, but the current sample digestion and ion exchange methods used for Tl isotope analysis take a long time. To improve the efficiency of chemical pretreatment of samples for Tl isotope analysis, the samples were decomposed by the microwave digestion method. In the mixed acid system of 2mL HNO3, 2mL HF and 0.5mL HClO4, 0.2g of GBW07406 could be completely dissolved by selecting the digestion procedure. The slurry was then loaded on AG1-X8 resin, followed by eluting with 2mL 2mol/L HNO3-1% Br2 for 6 times, 2mL H2O for 1 time, and 2mL 0.1mol/L HCl-6% SO2 for 5 times (Tl collection). The amount of Fe3+ and Al3+ allowed in the sample solution should not exceed 2.56mmol and 4.90mmol respectively, otherwise the recovery rate of Tl will be reduced. Measurement ε205Tl values for four geological reference materials (NOD-P-1, NOD-A-1, GBW07406 and GSP-2) by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) showed a good precision (2SD better than 0.3, n=6) and a fixed difference of 0.8 compared with the value in the literature, indicating that the ε205Tl value of GSB04-1758-2004 with respect to NIST 997 should be approximately equal to 0.8. The BRIEF REPORT is available for this paper at
[1] | 邱啸飞, 卢松山, 谭娟娟, 等. 铊同位素分析技术及其在地学中的应用[J]. 地球科学——中国地质大学学报, 2014, 39(6): 705−715. doi: 10.3799/dqkx.2014.066 Qiu X F, Lu S S, Tan J J, et al. Advances in Tl isotopic analysis and its geological applications[J]. Earth Science—Journal of China University of Geosciences, 2014, 39(6): 705−715. doi: 10.3799/dqkx.2014.066 |
[2] | Rehkämper M, Halliday A N. The precise measurement of Tl isotopic compositions by MC-ICP-MS: Application to the analysis of geological materials and meteorites[J]. Geochimica et Cosmochimica Acta, 1999, 63: 935−944. doi: 10.1016/S0016-7037(98)00312-3 |
[3] | Nielsen S G, Rehkämper M, Baker J, et al. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICP-MS[J]. Chemical Geology, 2004, 204: 109−124. doi: 10.1016/j.chemgeo.2003.11.006 |
[4] | Brett A, Prytulak J, Hammond S J, et al. Thallium mass fraction and stable isotope ratios of sixteen geological reference materials[J]. Geostandards and Geoanalytical Research, 2018, 42: 339−360. doi: 10.1111/ggr.12215 |
[5] | Wang Z Y, Li J, Yin L, et al. A new procedure for separating thallium from geological materials prior to stable isotope ratio determination by MC-ICP-MS[J]. Chemical Geology, 2023, 627: 121457. doi: 10.1016/j.chemgeo.2023.121457 |
[6] | Baker R G A, Schönbächler M, Rehkämper M, et al. The thallium isotope composition of carbonaceous chondrites: New evidence for live 205Pb in the early Solar system[J]. Earth and Planetary Science Letters, 2010, 291: 39−47. doi: 10.1016/j.jpgl.2009.12.044 |
[7] | Wei F, Prytulak J, Baker E B, et al. Identifying Tethys oceanic fingerprint in post-collisional potassium-rich lavas in Tibet using thallium isotopes[J]. Chemical Geology, 2022, 607: 121013. doi: 10.1016/j.chemgeo.2022.121013 |
[8] | Zhou Y T, He H P, Wang J, et al. Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during lead zinc smelting activities[J]. Science of the Total Environment, 2022, 803: 150036. doi: 10.1016/j.scitotenv.2021.150036 |
[9] | Migaszewski Z M, Gałuszka A. Abundance and fate of thallium and its stable isotopes in the environment[J]. Reviews in Environmental Science and Bio/Technology, 2021, 20: 5−30. doi: 10.1007/s11157-020-09564-8 |
[10] | Liu J, Ouyang Q E, Wang L, et al. Quantification of smelter-derived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence[J]. Journal of Hazardous Materials, 2022, 424: 127594. doi: 10.1016/j.jhazmat.2021.127594 |
[11] | Liu J, Yuan W, Ouyang Q E, et al. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils[J]. Science of the Total Environment, 2023, 882: 163404. doi: 10.1016/j.scitotenv.2023.163404 |
[12] | 贾彦龙, 肖唐付, 宁曾平, 等. 铊同位素及环境示踪研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3): 311−316. doi: 10.3969/j.issn.1007-2802.2010.03.016 Jia Y L, Xiao T F, Ning Z P, et al. Thallium isotopes and environmental tracing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 311−316. doi: 10.3969/j.issn.1007-2802.2010.03.016 |
[13] | 李志华, 高树林. 泡沫塑料富集-火焰原子荧光光谱法测定土壤及水系沉积物中微量铊[J]. 分析仪器, 2023(3): 45−49. doi: 10.3969/j.issn.1001-232x.2023.03.007 Li Z H, Gao S L. Determination of trace thallium in soil and stream sediments by foam-enrichment and flame atomic fluorescence spectrometry[J]. Analytical Instruments, 2023(3): 45−49. doi: 10.3969/j.issn.1001-232x.2023.03.007 |
[14] | 罗芝雅, 王贵超, 刘荣丽, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定黑钨矿中铊[J]. 冶金分析, 2022, 42(3): 47−51. doi: 10.13228/j.boyuan.issn1000-7571.011563 Luo Z Y, Wang G C, Liu R L, et al. Determination of thallium in wolstenite by sodium peroxidation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(3): 47−51. doi: 10.13228/j.boyuan.issn1000-7571.011563 |
[15] | 汪浩, 曹静, 袁金华. 分步消解-石墨炉原子吸收光谱法测定土壤中铊的含量[J]. 理化检验(化学分册), 2022, 58(1): 106−109. doi: 10.11973/lhjy-hx202201019 Wang H, Cao J, Yuan J H. Determination of thallium content in soil by stepwise digestion-graphite furnace atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(1): 106−109. doi: 10.11973/lhjy-hx202201019 |
[16] | 谢焱鑫, 杨力, 邬宇茜. 电感耦合等离子体质谱法测定环境土壤中的痕量铊及测定干扰的消除[J]. 理化检验(化学分册), 2020, 56(8): 930−932. doi: CNKI:SUN:LHJH.0.2020-08-017 Xie Y X, Yang L, Wu Y Q. Determination of trace thallium in environmental soil by inductively coupled plasma mass spectrometry and elimination of interference[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(8): 930−932. doi: CNKI:SUN:LHJH.0.2020-08-017 |
[17] | Owens J D, Nielsen S G, Horner T J, et al. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial[J]. Geochimica et Cosmochimica Acta, 2017, 213: 291−307. doi: 10.1016/j.gca.2017.06.041 |
[18] | 李建荣, 舒士倡, 张学玲, 等. 微波消解-电感耦合等离子体质谱法测定枸杞中22种痕量元素[J]. 理化检验(化学分册), 2021, 57(3): 278−282. doi: 10.11973/lhjy-hx202103016 Li J Y, Shu S C, Zhang X L, et al. Determination of 22 trace elements in Lycium barbarum by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(3): 278−282. doi: 10.11973/lhjy-hx202103016 |
[19] | 徐玲珀, 高巧玲. 微波消解-电感耦合等离子体质谱法测定啤酒中8种微量元素[J]. 理化检验(化学分册), 2022, 58(7): 791−794. doi: 10.11973/lhjy-hx202207009 Xu L P, Gao Q L. Determination of 8 trace elements in beer by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 791−794. doi: 10.11973/lhjy-hx202207009 |
[20] | 文田耀, 时志路, 孙文军, 等. 微波消解-电感耦合等离子体质谱法测定土壤中10种重金属元素[J]. 化学分析计量, 2023, 32(8): 16−19, 29. doi: 10.3969/j.issn.1008-6145.2023.08.004 Wen T Y, Shi Z L, Sun W J, et al. Determination of 10 heavy metals in soil by microwave digestion and inductively coupled plasma mass spectrometry[J]. Chemical Analytical Metrology, 2023, 32(8): 16−19, 29. doi: 10.3969/j.issn.1008-6145.2023.08.004 |
[21] | 肖细炼, 刘杰, 魏立, 等. 微波消解-电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法[J]. 物探与化探, 2023, 47(3): 739−746. doi: 10.11720/wtyht.2023.1315 Xiao X L, Liu J, Wei L, et al. Simultaneous determination of 12 elements in biological samples by microwave digestion and inductively coupled plasma emission spectrometry[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 739−746. doi: 10.11720/wtyht.2023.1315 |
[22] | 边朋沙, 张硕, 安彩秀, 等. 高压微波消解-电感耦合等离子体质谱(ICP-MS)法测定小米样品中铜铅锌镉铬镍砷[J]. 中国无机分析化学, 2023, 13(5): 420−424. doi: 10.3969/j.issn.2095-1035.2023.05.003 Bian P S, Zhang S, An C X, et al. Determination of copper, lead, zinc, cadmium, chromium-nickel and arsenic in millet samples by high voltage microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 420−424. doi: 10.3969/j.issn.2095-1035.2023.05.003 |
[23] | 袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356−363. doi: 10.15898/j.cnki.11-2131/td.201707290122 Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356−363. doi: 10.15898/j.cnki.11-2131/td.201707290122 |
[24] | 李丽君, 薛静. 微波消解-电感耦合等离子体质谱法测定高岭土中10种微量元素[J]. 岩矿测试, 2022, 41(1): 22−31. doi: 10.15898/j.cnki.11-2131/td.202103240042 Li L J, Xue J. Determination of 10 trace elements in kaolin by ICP-MS with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22−31. doi: 10.15898/j.cnki.11-2131/td.202103240042 |
[25] | 樊蕾, 郭晓瑞, 王甜甜, 等. 微波消解-电感耦合等离子体原子发射光谱法测定磷矿石中9种主次元素[J]. 冶金分析, 2023, 43(9): 56−61. doi: 10.13228/j.boyuan.issn1000-7571.012180 Fan L, Guo X R, Wang T T, et al. Determination of 9 primary and secondary elements in phosphate rock by microwave digestion and inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(9): 56−61. doi: 10.13228/j.boyuan.issn1000-7571.012180 |
[26] | Yuan Y H, Shao Y, Yang F, et al. Determination of Se and Te by hydride generation-inductively coupled plasma mass spectrometry after mixed-acid digestion of tungsten ores[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2023, 203: 106664. doi: 10.1016/j.sab.2023.106664 |
[27] | Nielsen S G, Rehkämper M, Prytulak J. Investigation and application of thallium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 759−798. doi: 10.2138/rmg.2017.82.18 |
[28] | 张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347−355. doi: 10.15898/j.cnki.11-2131/td.201803290033 Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347−355. doi: 10.15898/j.cnki.11-2131/td.201803290033 |
Elution curves of Tl (AG1-X8 resin, 100-200 mesh), 2mol/L HNO3-1% Br2 for eluting matrix elments, ultrapure water for eluting NO3− and BrO−, 0.1mol/L HCl-6% SO2 for collecting Tl.
Influences of the load of Fe2O3, CaO and Al2O3 on the recovery of Tl (n=3)
The reproducibility of analytical results for Tl standard solution GSB 04-1758-2004 (n=40)