Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 2
Article Contents

QI Jinjie, YU Hongxia, XU Qinghong, YUAN Yonghai, YANG Feng, ZHANG Huiping. Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples[J]. Rock and Mineral Analysis, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174
Citation: QI Jinjie, YU Hongxia, XU Qinghong, YUAN Yonghai, YANG Feng, ZHANG Huiping. Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples[J]. Rock and Mineral Analysis, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174

Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples

More Information
  • The thallium (Tl) isotope system can be utilized to track various geological processes, but the current sample digestion and ion exchange methods used for Tl isotope analysis take a long time. To improve the efficiency of chemical pretreatment of samples for Tl isotope analysis, the samples were decomposed by the microwave digestion method. In the mixed acid system of 2mL HNO3, 2mL HF and 0.5mL HClO4, 0.2g of GBW07406 could be completely dissolved by selecting the digestion procedure. The slurry was then loaded on AG1-X8 resin, followed by eluting with 2mL 2mol/L HNO3-1% Br2 for 6 times, 2mL H2O for 1 time, and 2mL 0.1mol/L HCl-6% SO2 for 5 times (Tl collection). The amount of Fe3+ and Al3+ allowed in the sample solution should not exceed 2.56mmol and 4.90mmol respectively, otherwise the recovery rate of Tl will be reduced. Measurement ε205Tl values for four geological reference materials (NOD-P-1, NOD-A-1, GBW07406 and GSP-2) by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) showed a good precision (2SD better than 0.3, n=6) and a fixed difference of 0.8 compared with the value in the literature, indicating that the ε205Tl value of GSB04-1758-2004 with respect to NIST 997 should be approximately equal to 0.8. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202311070174.

  • 加载中
  • [1] 邱啸飞, 卢松山, 谭娟娟, 等. 铊同位素分析技术及其在地学中的应用[J]. 地球科学——中国地质大学学报, 2014, 39(6): 705−715. doi: 10.3799/dqkx.2014.066

    CrossRef Google Scholar

    Qiu X F, Lu S S, Tan J J, et al. Advances in Tl isotopic analysis and its geological applications[J]. Earth Science—Journal of China University of Geosciences, 2014, 39(6): 705−715. doi: 10.3799/dqkx.2014.066

    CrossRef Google Scholar

    [2] Rehkämper M, Halliday A N. The precise measurement of Tl isotopic compositions by MC-ICP-MS: Application to the analysis of geological materials and meteorites[J]. Geochimica et Cosmochimica Acta, 1999, 63: 935−944. doi: 10.1016/S0016-7037(98)00312-3

    CrossRef Google Scholar

    [3] Nielsen S G, Rehkämper M, Baker J, et al. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICP-MS[J]. Chemical Geology, 2004, 204: 109−124. doi: 10.1016/j.chemgeo.2003.11.006

    CrossRef Google Scholar

    [4] Brett A, Prytulak J, Hammond S J, et al. Thallium mass fraction and stable isotope ratios of sixteen geological reference materials[J]. Geostandards and Geoanalytical Research, 2018, 42: 339−360. doi: 10.1111/ggr.12215

    CrossRef Google Scholar

    [5] Wang Z Y, Li J, Yin L, et al. A new procedure for separating thallium from geological materials prior to stable isotope ratio determination by MC-ICP-MS[J]. Chemical Geology, 2023, 627: 121457. doi: 10.1016/j.chemgeo.2023.121457

    CrossRef Google Scholar

    [6] Baker R G A, Schönbächler M, Rehkämper M, et al. The thallium isotope composition of carbonaceous chondrites: New evidence for live 205Pb in the early Solar system[J]. Earth and Planetary Science Letters, 2010, 291: 39−47. doi: 10.1016/j.jpgl.2009.12.044

    CrossRef Google Scholar

    [7] Wei F, Prytulak J, Baker E B, et al. Identifying Tethys oceanic fingerprint in post-collisional potassium-rich lavas in Tibet using thallium isotopes[J]. Chemical Geology, 2022, 607: 121013. doi: 10.1016/j.chemgeo.2022.121013

    CrossRef Google Scholar

    [8] Zhou Y T, He H P, Wang J, et al. Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during lead zinc smelting activities[J]. Science of the Total Environment, 2022, 803: 150036. doi: 10.1016/j.scitotenv.2021.150036

    CrossRef Google Scholar

    [9] Migaszewski Z M, Gałuszka A. Abundance and fate of thallium and its stable isotopes in the environment[J]. Reviews in Environmental Science and Bio/Technology, 2021, 20: 5−30. doi: 10.1007/s11157-020-09564-8

    CrossRef Google Scholar

    [10] Liu J, Ouyang Q E, Wang L, et al. Quantification of smelter-derived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence[J]. Journal of Hazardous Materials, 2022, 424: 127594. doi: 10.1016/j.jhazmat.2021.127594

    CrossRef Google Scholar

    [11] Liu J, Yuan W, Ouyang Q E, et al. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils[J]. Science of the Total Environment, 2023, 882: 163404. doi: 10.1016/j.scitotenv.2023.163404

    CrossRef Google Scholar

    [12] 贾彦龙, 肖唐付, 宁曾平, 等. 铊同位素及环境示踪研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3): 311−316. doi: 10.3969/j.issn.1007-2802.2010.03.016

    CrossRef Google Scholar

    Jia Y L, Xiao T F, Ning Z P, et al. Thallium isotopes and environmental tracing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 311−316. doi: 10.3969/j.issn.1007-2802.2010.03.016

    CrossRef Google Scholar

    [13] 李志华, 高树林. 泡沫塑料富集-火焰原子荧光光谱法测定土壤及水系沉积物中微量铊[J]. 分析仪器, 2023(3): 45−49. doi: 10.3969/j.issn.1001-232x.2023.03.007

    CrossRef Google Scholar

    Li Z H, Gao S L. Determination of trace thallium in soil and stream sediments by foam-enrichment and flame atomic fluorescence spectrometry[J]. Analytical Instruments, 2023(3): 45−49. doi: 10.3969/j.issn.1001-232x.2023.03.007

    CrossRef Google Scholar

    [14] 罗芝雅, 王贵超, 刘荣丽, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定黑钨矿中铊[J]. 冶金分析, 2022, 42(3): 47−51. doi: 10.13228/j.boyuan.issn1000-7571.011563

    CrossRef Google Scholar

    Luo Z Y, Wang G C, Liu R L, et al. Determination of thallium in wolstenite by sodium peroxidation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(3): 47−51. doi: 10.13228/j.boyuan.issn1000-7571.011563

    CrossRef Google Scholar

    [15] 汪浩, 曹静, 袁金华. 分步消解-石墨炉原子吸收光谱法测定土壤中铊的含量[J]. 理化检验(化学分册), 2022, 58(1): 106−109. doi: 10.11973/lhjy-hx202201019

    CrossRef Google Scholar

    Wang H, Cao J, Yuan J H. Determination of thallium content in soil by stepwise digestion-graphite furnace atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(1): 106−109. doi: 10.11973/lhjy-hx202201019

    CrossRef Google Scholar

    [16] 谢焱鑫, 杨力, 邬宇茜. 电感耦合等离子体质谱法测定环境土壤中的痕量铊及测定干扰的消除[J]. 理化检验(化学分册), 2020, 56(8): 930−932. doi: CNKI:SUN:LHJH.0.2020-08-017

    CrossRef Google Scholar

    Xie Y X, Yang L, Wu Y Q. Determination of trace thallium in environmental soil by inductively coupled plasma mass spectrometry and elimination of interference[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(8): 930−932. doi: CNKI:SUN:LHJH.0.2020-08-017

    CrossRef Google Scholar

    [17] Owens J D, Nielsen S G, Horner T J, et al. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial[J]. Geochimica et Cosmochimica Acta, 2017, 213: 291−307. doi: 10.1016/j.gca.2017.06.041

    CrossRef Google Scholar

    [18] 李建荣, 舒士倡, 张学玲, 等. 微波消解-电感耦合等离子体质谱法测定枸杞中22种痕量元素[J]. 理化检验(化学分册), 2021, 57(3): 278−282. doi: 10.11973/lhjy-hx202103016

    CrossRef Google Scholar

    Li J Y, Shu S C, Zhang X L, et al. Determination of 22 trace elements in Lycium barbarum by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(3): 278−282. doi: 10.11973/lhjy-hx202103016

    CrossRef Google Scholar

    [19] 徐玲珀, 高巧玲. 微波消解-电感耦合等离子体质谱法测定啤酒中8种微量元素[J]. 理化检验(化学分册), 2022, 58(7): 791−794. doi: 10.11973/lhjy-hx202207009

    CrossRef Google Scholar

    Xu L P, Gao Q L. Determination of 8 trace elements in beer by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 791−794. doi: 10.11973/lhjy-hx202207009

    CrossRef Google Scholar

    [20] 文田耀, 时志路, 孙文军, 等. 微波消解-电感耦合等离子体质谱法测定土壤中10种重金属元素[J]. 化学分析计量, 2023, 32(8): 16−19, 29. doi: 10.3969/j.issn.1008-6145.2023.08.004

    CrossRef Google Scholar

    Wen T Y, Shi Z L, Sun W J, et al. Determination of 10 heavy metals in soil by microwave digestion and inductively coupled plasma mass spectrometry[J]. Chemical Analytical Metrology, 2023, 32(8): 16−19, 29. doi: 10.3969/j.issn.1008-6145.2023.08.004

    CrossRef Google Scholar

    [21] 肖细炼, 刘杰, 魏立, 等. 微波消解-电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法[J]. 物探与化探, 2023, 47(3): 739−746. doi: 10.11720/wtyht.2023.1315

    CrossRef Google Scholar

    Xiao X L, Liu J, Wei L, et al. Simultaneous determination of 12 elements in biological samples by microwave digestion and inductively coupled plasma emission spectrometry[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 739−746. doi: 10.11720/wtyht.2023.1315

    CrossRef Google Scholar

    [22] 边朋沙, 张硕, 安彩秀, 等. 高压微波消解-电感耦合等离子体质谱(ICP-MS)法测定小米样品中铜铅锌镉铬镍砷[J]. 中国无机分析化学, 2023, 13(5): 420−424. doi: 10.3969/j.issn.2095-1035.2023.05.003

    CrossRef Google Scholar

    Bian P S, Zhang S, An C X, et al. Determination of copper, lead, zinc, cadmium, chromium-nickel and arsenic in millet samples by high voltage microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 420−424. doi: 10.3969/j.issn.2095-1035.2023.05.003

    CrossRef Google Scholar

    [23] 袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356−363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    CrossRef Google Scholar

    Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356−363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    CrossRef Google Scholar

    [24] 李丽君, 薛静. 微波消解-电感耦合等离子体质谱法测定高岭土中10种微量元素[J]. 岩矿测试, 2022, 41(1): 22−31. doi: 10.15898/j.cnki.11-2131/td.202103240042

    CrossRef Google Scholar

    Li L J, Xue J. Determination of 10 trace elements in kaolin by ICP-MS with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22−31. doi: 10.15898/j.cnki.11-2131/td.202103240042

    CrossRef Google Scholar

    [25] 樊蕾, 郭晓瑞, 王甜甜, 等. 微波消解-电感耦合等离子体原子发射光谱法测定磷矿石中9种主次元素[J]. 冶金分析, 2023, 43(9): 56−61. doi: 10.13228/j.boyuan.issn1000-7571.012180

    CrossRef Google Scholar

    Fan L, Guo X R, Wang T T, et al. Determination of 9 primary and secondary elements in phosphate rock by microwave digestion and inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(9): 56−61. doi: 10.13228/j.boyuan.issn1000-7571.012180

    CrossRef Google Scholar

    [26] Yuan Y H, Shao Y, Yang F, et al. Determination of Se and Te by hydride generation-inductively coupled plasma mass spectrometry after mixed-acid digestion of tungsten ores[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2023, 203: 106664. doi: 10.1016/j.sab.2023.106664

    CrossRef Google Scholar

    [27] Nielsen S G, Rehkämper M, Prytulak J. Investigation and application of thallium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 759−798. doi: 10.2138/rmg.2017.82.18

    CrossRef Google Scholar

    [28] 张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347−355. doi: 10.15898/j.cnki.11-2131/td.201803290033

    CrossRef Google Scholar

    Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347−355. doi: 10.15898/j.cnki.11-2131/td.201803290033

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(7)

Article Metrics

Article views(774) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint