Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 5
Article Contents

GUO Xinwei, LI Kun, HAO Zhihong, YAO Jianzhen, XU Jinli, BAI Jinfeng. Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique[J]. Rock and Mineral Analysis, 2023, 42(5): 1031-1040. doi: 10.15898/j.ykcs.202307310102
Citation: GUO Xinwei, LI Kun, HAO Zhihong, YAO Jianzhen, XU Jinli, BAI Jinfeng. Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique[J]. Rock and Mineral Analysis, 2023, 42(5): 1031-1040. doi: 10.15898/j.ykcs.202307310102

Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique

More Information
  • BACKGROUND

    The majority of current molybdenum ore analysis techniques use absorbance, gravimetric methods, ICP-MS, ICP-OES, XRF, etc., which are primarily based on liquid injection, with a lengthy analytical procedure, complex steps, and a measurable range of 0.01%-5.17%[16]. The joint technologies of EPMA, SEM, and X-ray spectroscopy are more expensive, and the results may not be reproducible[18-21]. Compared with the above methods, AC-Arc atomic emission spectrometry (Arc-AES), which does not call for the use of acids and bases, has the potential to be applied to the analysis of molybdenum ore and molybdenum powder with a high content of Mo over 5%.

    OBJECTIVES

    To improve the current analytical techniques for determining high content of molybdenum in molybdenum ore.

    METHODS

    The mixed sample was loaded into the lower electrode after being ground at 2400Hz for 30min with the different sample-to-buffer ratio in a 5mL crucible. Two drops of a 2% mass fraction sucrose-ethanol solution were added and dried at 70℃ for 1h. The samples were mounted on an AES-8000 direct-reading atomic emission spectrometer using the vertical electrode method. The internal reference method was used to fit the quadratic curve in logarithmic coordinates by subtracting the background spectral lines of the analyzed elements and the internal reference elements.  The experiments were conducted by choosing the internal reference element types and spectral lines, selecting the Mo spectral lines, deciding the sample-to-buffer ratio, optimizing the current loading procedure, setting the spectral uptake time, and other conditions. A set of national-level reference materials and national-level synthetic silicate spectral analysis reference materials were used for calibration. The relative standard deviation and logarithmic deviation were utilized for quality control.

    RESULTS

    (1) The analytical line pair is chosen to be Mo 277.54nm/Ge 326.9494nm. The uniformity of internal reference elements is ensured by the excessive addition of germanium dioxide. Mo 277.54nm and Ge 326.9494nm evaporation curves exhibit good consistency when GBW07142 is used as the sample (Fig.1). (2) The sample-to-buffer ratio is selected as 1∶2. It is discovered that the evaporation behavior is significantly improved when it reaches 1∶2; simply increasing the buffer, is not conducive to the analysis of actual samples. (3) Primary current is 4A for 5s, secondary current is 15A for 30s, and the total interception exposure time is 35s. The results show that the intensity of Mo and Ge greatly increases before 30s and slows down after 35s (Fig.2). (4) The reference series components are shown in Table 1 with the content range between 500 to 500800μg/g. The reference curve equation is y=−0.077x2+1.3077x+1.2725, with a coefficient of determination (R2) of 0.999 (Fig. E.1).  The detection limit of Mo in this method is 27.38μg/g, which is slightly higher than that of alkali fusion-inductively coupled plasma spectrometry (0.002%)[9] and X-ray fluorescence spectrometry (0.0026%)[16]. The RSD ranges from 3.28% to 8.30%, and the RE ranges from −0.43% to 0.73% (Table 2). The results are consistent with the reference values, with significant precision and accuracy, which meets the requirements (△lgC≤0.05, RSD≤10%) listed in Specification of Multi-Purpose Regional Geochemical Survey (DZ/T 0258—2014).

    CONCLUSIONS

    This method can be employed to determine the high Mo content in molybdenum ore and molybdenum powder without dilution. Moreover, it is suitable for a wider determination range with the upper limit rising to 50%. It can solve possible problems, such as large sample demand, large chemical reagent use, cumbersome operation and contamination in other analytical methods.

  • 加载中
  • [1] 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178.

    Google Scholar

    Zhu X R. Analysis of the supply and demand situation of molybdenum resources at home and abroad[J]. Mineral Protection and Utilization, 2020, 40(1): 172−178.

    Google Scholar

    [2] 冯丹丹. 全球钼资源供需形势分析与展望[J]. 国土资源情报, 2020(10): 39−44.

    Google Scholar

    Feng D D. Analysis and prospect of global molybdenum resource supply and demand situation[J]. Land and Resources Intelligence, 2020(10): 39−44.

    Google Scholar

    [3] 郑波. 固体直接进样测土壤重金属的方法与技术研究[D]. 北京: 中国农业科学院, 2016.

    Google Scholar

    Zheng B. Studies on measuring method and technology of soil heavy metals by using direct solid sampling [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.

    Google Scholar

    [4] 赵炳建, 赵浩年, 赵越, 等. 微波消解-电感耦合等离子体原子发射光谱法测定钼铁合金中的钼含量[J]. 分析测试技术与仪器, 2022, 28(4): 422−426.

    Google Scholar

    Zhao B J, Zhao H N, Zhao Y, et al. Determination of ferromolybdenum alloy by microwave digestion inductively coupled plasma atomic emission spectroscopy[J]. Analysis and Testing Technology and Instruments, 2022, 28(4): 422−426.

    Google Scholar

    [5] 王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040

    CrossRef Google Scholar

    Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040

    CrossRef Google Scholar

    [6] 杨萍, 党铭铭, 郭永艳, 等. 五酸消解-电感耦合等离子体原子发射光谱法测定矽卡岩型多金属钨矿中钨、钼、铋的含量[J]. 理化检验(化学分册), 2022, 58(7): 773−776.

    Google Scholar

    Yang P, Dang M M, Guo Y Y, et al. Determination of W, Mo, and Bi in skarn-type polymetallic tungsten ores by ICP-AES with penta acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 773−776.

    Google Scholar

    [7] 党铭铭, 杨萍, 雷勇, 等. 电感耦合等离子体发射光谱技术测定多金属伴生矿中钨钼铋两种消解方法的对比[J]. 岩矿测试, 2021, 40(4): 603−611.

    Google Scholar

    Dang M M, Yang P, Lei Y, et al. Comparison of two different sample digestion methods for determination of tungsten, molybdenum, and bismuth in polymetallic ore by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 603−611.

    Google Scholar

    [8] 杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55−60. doi: 10.13228/j.boyuan.issn1000-7571.010796

    CrossRef Google Scholar

    Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55−60. doi: 10.13228/j.boyuan.issn1000-7571.010796

    CrossRef Google Scholar

    [9] 黄朝文, 莫凯敏. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中的钨钼[J]. 当代化工研究, 2023(11): 76−78.

    Google Scholar

    Huang C W, Mo K M. Determination of tungsten and molybdenum in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Modern Chemical Research, 2023(11): 76−78.

    Google Scholar

    [10] 吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753

    CrossRef Google Scholar

    Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753

    CrossRef Google Scholar

    [11] Panteeva S, Gladkochoub D, Donkaya T, et al. Determination of 24 trace elements in felsic rocks by inductively coupled plasma spectrometry after lithium metaborate fusion[J]. Spectrochimica Acta Part B, 2003, 58(2): 341−350. doi: 10.1016/S0584-8547(02)00151-9

    CrossRef Google Scholar

    [12] Diegor W, Longgerich H, Abrajano T, et al. Applicability of a high pressure digestion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J]. Analytica Chemica Acta, 2011, 431(2): 195−207.

    Google Scholar

    [13] 任梦阳. 氟化氢铵消解-电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中的钨锡钼[J]. 中国无机分析化学, 2022, 12(2): 52−55. doi: 10.3969/j.issn.2095-1035.2022.02.008

    CrossRef Google Scholar

    Ren M Y. Determination of tungsten, tin and molybdenum in geochemical samples by inductively coupled plasma mass spectrometry (ICP-MS) with ammmonium fluoride digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 52−55. doi: 10.3969/j.issn.2095-1035.2022.02.008

    CrossRef Google Scholar

    [14] 张征莲, 施意华, 唐碧玉, 等. 电感耦合等离子体质谱(ICP-MS)法测定炭质页岩中的钨钼钪[J]. 中国无机分析化学, 2021, 11(4): 39−44.

    Google Scholar

    Zhang Z L, Shi Y H, Tang B Y, et al. Determination of tungsten, molybdenum and scandium in carbon shale by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(4): 39−44.

    Google Scholar

    [15] 邓飞, 韩亮, 马青兰. X射线荧光光谱压片法快速分析钼矿石中的钼含量[J]. 甘肃科技, 2014, 3(15): 39−40,12.

    Google Scholar

    Deng F, Han L, Ma Q L. Rapid analysis of molybdenum content in molybdenum ores by X-ray fluorescence spectroscopy compression method[J]. Gansu Science and Technology, 2014, 3(15): 39−40,12.

    Google Scholar

    [16] 王学田, 丁力, 李艳娟, 等. X射线荧光光谱法同时测定矿石中钨钼锡[J]. 分析试验室, 2015, 34(9): 1031−1037.

    Google Scholar

    Wang X T, Ding L, Li Y J, et al. Simultaneous determination of W, Mo and Sn in ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(9): 1031−1037.

    Google Scholar

    [17] 杨小丽, 李小丹, 杨梅. X射线荧光光谱法测定以钨和钼为主的多金属矿中主次成分[J]. 冶金分析, 2013, 33(8): 38−42.

    Google Scholar

    Yang X L, Li X D, Yang M. Determination of major and minor components in tungsten and molybdenum polymetallic ore by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2013, 33(8): 38−42.

    Google Scholar

    [18] 温利刚, 贾木欣, 付强,等. 基于扫描电子显微镜-X射线能谱的矿物自动分析系统(BPMA)测定高纯石英砂中杂质矿物[J]. 中国无机分析化学, 2023, 13(8): 845−850.

    Google Scholar

    Wen L G, Jia M X, Fu Q, et al. Determination of impurity minerals in high-purity quartz by SEM-EDS-based automated process mineralogy analyzing system (BPMA)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 845−850.

    Google Scholar

    [19] 付雪涛, 赵俊莎, 高亚欣, 等. X射线能谱法测定镍钴锰酸锂中镍、钴、锰三元素摩尔比[J]. 中国无机分析化学, 2020, 10(1): 76−80.

    Google Scholar

    Fu X T, Zhao J S, Gao Y X, et al. Determination for the molar ratio of nickel, cobalt, manganese of nickel-cobalt-manganese lithium by X-ray energy spectrum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 76−80.

    Google Scholar

    [20] 高尚, 黄梦诗, 杨振英, 等. 扫描电镜中X射线能谱仪的技术进展[J]. 分析科学学报, 2022, 38(1): 115−121.

    Google Scholar

    Gao S, Huang M S, Yang Z Y, et al. Technical progress of X-ray energy dispersive spectroscopy in scanning electron microscope[J]. Journal of Analytical Science, 2022, 38(1): 115−121.

    Google Scholar

    [21] 《岩石矿物分析》编委会. 《岩石矿物分析》(第四版 第一分册)[M]. 北京: 地质出版社, 2011: 660-679, 903-923.

    Google Scholar

    Editorial Board of “ Rock and Mineral Analysis”. Rock and Mineral Analysis (Fourth Edition, Volume Ⅰ)[M]. Beijing: Geological Publishing House, 2011: 660-679, 903-923.

    Google Scholar

    [22] 张勤. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 25(3): 292−297.

    Google Scholar

    Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3): 292−297.

    Google Scholar

    [23] 柴红, 冯先进, 李华昌. 电弧原子发射光谱(Arc-AES)的应用研究进展[J]. 中国资源综合利用, 2018, 36(1): 88−92.

    Google Scholar

    Chai H, Feng X J, Li H C. Study on the application progress of arc-emission spectroscopy (Arc-AES) technology[J]. China Resources Comprehensive Utilization, 2018, 36(1): 88−92.

    Google Scholar

    [24] 杨婷. 发射光谱法测定地质样品中的锡[J]. 科技资讯, 2016, 14(27): 154, 156.

    Google Scholar

    Yang T. Determination of tin in geological samples by emission spectroscopy[J]. Science and Technology Information, 2016, 14(27): 154, 156.

    Google Scholar

    [25] Savinova E, Sukach Y, Kolesov G, et al. Using arc excitation atomic emission spectrometry in studying the microelement composition of bottom sediments[J]. Journal of Analytical Chemistry, 2013, 68(2): 127-131.

    Google Scholar

    [26] 马景治, 曲少鹏, 李光一, 等. 固体进样-发射光谱法同时测定地球化学样品中铜铅锌镍[J]. 岩矿测试, 2022, 41(6): 1007−1016.

    Google Scholar

    Ma J Z, Qu S P, Li G Y, et al. Simultaneous determination of copper, lead, zinc and nickel in geochemical samples by emission spectrometry with solid sampling technique[J]. Rock and Mineral Analysis, 2022, 41(6): 1007−1016.

    Google Scholar

    [27] 赵丽, 于阗. 液体缓冲剂交流电弧发射光谱分析中内标元素选择探讨[J]. 现代科学仪器, 2021, 38(3): 57−60.

    Google Scholar

    Zhao L, Yu T. Selection of internal standard elements in AC arc emission spectroscopy of liquid buffers[J]. Modern Scientific Instruments, 2021, 38(3): 57−60.

    Google Scholar

    [28] 王鹤龄, 李光一, 曲少鹏, 等. 氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J]. 岩矿测试, 2017, 36(4): 367−373.

    Google Scholar

    Wang H L, Li G Y, Qu S P, et al. Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367−373.

    Google Scholar

    [29] 姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124−3127.

    Google Scholar

    Yao J Z, Hao Z H, Tang R L, et al. Determination of high content tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124−3127.

    Google Scholar

    [30] 肖细炼, 朱园园, 陈燕波, 等. 交流电弧-光电直读发射光谱法测定岩石矿物样品中高含量锡[J]. 理化检验(化学分册), 2021, 57(3): 241−246.

    Google Scholar

    Xiao X L, Zhu Y Y, Chen Y B, et al. Determination of high content tin in rock and mineral samples by alternating current AC-optoelectronic direct reading emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(3): 241−246.

    Google Scholar

    [31] 郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-Arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527−533.

    Google Scholar

    Hao Z H, Yao J Z, Tang R L, et al. Determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by DC arc direct reading atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527−533.

    Google Scholar

    [32] 李小辉. 交流电弧直读原子发射光谱法快速测定钼矿石中的银[J]. 理化检验(化学分册), 2017, 53(6): 716−718.

    Google Scholar

    Li X H. Rapid determination of silver in molybdenum ores by AC arc direct reading atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6): 716−718.

    Google Scholar

    [33] 马景治, 李光一, 董学兵, 等. 交流电弧发射光谱法测定铅矿石中锡[J]. 冶金分析, 2023, 43(2): 39−45.

    Google Scholar

    Ma J Z, Li G Y, Dong X B, et al. Determination of tin in lead ore by AC arc emission spectrometry[J]. Metallurgical Analysis, 2023, 43(2): 39−45.

    Google Scholar

    [34] 郭心玮, 郝志红, 姚建贞, 等. 交流电弧原子发射光谱固体粉末样品制备方法的改进[J]. 分析测试技术与仪器, 2023, 29(1): 7−15.

    Google Scholar

    Guo X W, Hao Z H, Yao J Z, et al. Improvement of preparation method for determination of solid powder samples by AC-arc atomic emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 7−15.

    Google Scholar

    [35] 曲红静, 吴冬梅, 赵燕秋. 全谱直流电弧发射光谱法同时测定钛白粉中13种杂质元素[J]. 分析仪器, 2023(4): 16−19.

    Google Scholar

    Qu H J, Wu D M, Zhao Y Q. Simultaneous determination of 13 impurity elements in titanium dioxide by full spectrum DC arc emission spectrometry[J]. Analytical Instrumentation, 2023(4): 16−19.

    Google Scholar

    [36] 黄海波, 袁静, 凌波, 等. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质, 2023, 44(1): 103−117.

    Google Scholar

    Huang H B, Yuan J, Ling B, et al. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology, 2023, 44(1): 103−117.

    Google Scholar

    [37] 郝志红, 姚建贞, 唐瑞玲, 等. 交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡钼、铅的方法研究[J]. 地质学报, 2016, 90(8): 2070−2082.

    Google Scholar

    Hao Z H, Yao J Z, Tang R L, et al. Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct reading atomic emission spectroscopy[J]. Acta Geologica Sinica, 2016, 90(8): 2070−2082.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1357) PDF downloads(180) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint