Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 1
Article Contents

FENG Boxin, MEN Qianni, GAN Liming, WEI Liyong, LIU Jiufen, HE Tao, WANG Peng, HE Yixin. Determination of Soil Fluorine Speciation and Main Factors Affecting Tea Fluorine Content in Tea Gardens of Daba Mountain[J]. Rock and Mineral Analysis, 2024, 43(1): 166-176. doi: 10.15898/j.ykcs.202307070089
Citation: FENG Boxin, MEN Qianni, GAN Liming, WEI Liyong, LIU Jiufen, HE Tao, WANG Peng, HE Yixin. Determination of Soil Fluorine Speciation and Main Factors Affecting Tea Fluorine Content in Tea Gardens of Daba Mountain[J]. Rock and Mineral Analysis, 2024, 43(1): 166-176. doi: 10.15898/j.ykcs.202307070089

Determination of Soil Fluorine Speciation and Main Factors Affecting Tea Fluorine Content in Tea Gardens of Daba Mountain

More Information
  • In recent years, the relationship between fluorine intake through tea drinking and human health has received significant attention. To investigate the effect of soil properties on tea fluorine, 64 sets of tea garden soil-tea samples were collected in Ziyang County, Daba Mountain area, and a Freundlich model that affects the fluorine content of tea was established. The results show that: (1) The fluorine content in the surface soil of tea gardens ranges from 487.37 to 1120.78mg/kg, with an average value of 730.63mg/kg; The fluorine content of tea is 31.23-112.49mg/kg, with an average value of 57.58mg/kg. All samples do not exceed the limit of agricultural standards (NY659—2003); (2) The distribution of fluorine speciation in the soil is as follows: residual state>water-soluble state>organic state>iron manganese bound state>exchangeable state; (3) A multiple regression equation affecting the fluorine content in tea was constructed using five factors: water-soluble fluorine, CEC, exchangeable aluminum, organic matter, and pH as variables. The model can explain 86.0% of the variation, and the prediction accuracy of the model reached 88.0% through validation. This study can provide theoretical basis for the development of green agriculture. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202307070089.

  • 加载中
  • [1] 郜红建, 刘腾腾, 张显晨, 等. 安徽茶园土壤氟在茶树体内的富集与转运特征[J]. 环境化学, 2011, 30(8): 1462−1467.

    Google Scholar

    Gao H J, Liu T T, Zhang X C, et al. Bioaccumulation and translocation of fluoride from soil to different parts of tea plants in Anhui Province[J]. Environmental Chemistry, 2011, 30(8): 1462−1467.

    Google Scholar

    [2] He L L, Tu C L, He S Y, et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environmental Geochemistry and Health, 2021, 43: 1137−1154. doi: 10.1007/s10653-020-00568-5

    CrossRef Google Scholar

    [3] Jianmin B, Yu W, Juan Z. Arsenic and fluorine in groundwater in western Jilin Province, China: Occurrence and health risk assessment[J]. Natural Hazards, 2015(77): 1903−1914.

    Google Scholar

    [4] Mukherjee I, Singh U K. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India[J]. Environmental Research, 2022, 203: 111697. doi: 10.1016/j.envres.2021.111697

    CrossRef Google Scholar

    [5] 李凤嫣, 蒋天宇, 余涛, 等. 环境中氟的来源及健康风险评估研究进展[J]. 岩矿测试, 2021, 40(6): 793−807.

    Google Scholar

    Li F Y, Jiang T Y, Yu T, et al. Review on sources of fluorine in the environment and health risk assessment[J]. Rock and Mineral Analysis, 2021, 40(6): 793−807.

    Google Scholar

    [6] 邰苏日嘎拉, 李永春, 周文辉, 等. 宁夏固原市原州区高氟地区氟对人体健康的影响[J]. 岩矿测试, 2021, 40(6): 919−929.

    Google Scholar

    Tai Surigala, Li Y C, Zhou W H, et al. Effect of fluorine on human health in high-fluorine areas in Yuanzhou district, Guyuan City, Ningxia Autonomous Region[J]. Rock and Mineral Analysis, 2021, 40(6): 919−929.

    Google Scholar

    [7] Long H, Jiang Y M, Li C Q, et al. Effect of urea feeding on transforming and migrating soil fluorine in a tea garden of hilly region[J]. Environmental Geochemistry and Health, 2021, 43: 5087−5098. doi: 10.1007/s10653-021-00949-4

    CrossRef Google Scholar

    [8] 邢安琪, 武子辰, 徐晓寒, 等. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301−315.

    Google Scholar

    Xing A Q, Wu Z C, Xu X H, et al. Research advances of fluoride accumulation mechanisms in tea plant[J]. Journal of Tea Science, 2022, 42(3): 301−315.

    Google Scholar

    [9] Ruan J Y, Ma L F, Shi Y Z, et al. The impact of pH and calcium on the uptake of fluoride by tea plant (Camellia sinensis)[J]. Annals of Botany, 2004, 93(1): 97−105. doi: 10.1093/aob/mch010

    CrossRef Google Scholar

    [10] Yang Y, Liu Y, Huang C F, et al. Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant Soil, 2016, 402(1): 179−190.

    Google Scholar

    [11] McNeill F E, Mostafaei F, Pidruczny A, et al. Correlation between fluorine content in tea and bone assessed using neutron activation analysis in a Canadian urban population[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309: 389−395. doi: 10.1007/s10967-016-4749-x

    CrossRef Google Scholar

    [12] Yi X Y, Qiao S, Ma L, et al. Soil fluoride fractions and their bioavailability to tea plants[J]. Environmental Geochemistry and Health, 2017, 39: 1005−1016. doi: 10.1007/s10653-016-9868-3

    CrossRef Google Scholar

    [13] Wang H Y, Hu T, Wang M H, et al. Biochar addition to tea garden soils: Effects on tea fluoride uptake and accumulation[J]. Biochar, 2023, 5: 37. doi: 10.1007/s42773-023-00220-2

    CrossRef Google Scholar

    [14] 徐为霞, 林珍珠, 高树芳, 等. 酸性土壤有效氟提取方法研究[J]. 农业环境科学学报, 2006, 25(5): 1388−1392.

    Google Scholar

    Xu W X, Lin Z Z, Gao S F, et al. Extraction method for available fluorine in acid soils[J]. Journal of Agro-Environment Science, 2006, 25(5): 1388−1392.

    Google Scholar

    [15] Deng L, Wang J X, Xu B, et al. Fluorine speciation in loess, related quality assessment, and exposure risks implication in the Shaanxi Loess Plateau[J]. Environmental Earth Sciences, 2022, 81: 326. doi: 10.1007/s12665-022-10437-2

    CrossRef Google Scholar

    [16] 秦樊鑫, 吴迪, 黄先飞, 等. 高氟病区茶园土壤氟形态及其分布特征[J]. 中国环境科学, 2014, 34(11): 2859−2865.

    Google Scholar

    Qin F X, Wu D, Huang X F, et al. Distribution characteristics and speciation of fluorine in tea garden soils in the high fluoride area[J]. China Environmental Science, 2014, 34(11): 2859−2865.

    Google Scholar

    [17] 侯拓, 冯海艳, 杨忠芳, 等. 山东省桓台地区土壤F的地球化学特征及其影响因素[J]. 地质通报, 2021, 40(9): 1584−1591.

    Google Scholar

    Hou T, Feng H Y, Yang Z F, et al. Geochemical characteristics and influencing factors of soil fluorine in the Huantai area of Shandong Province[J]. Geological Bulletin of China, 2021, 40(9): 1584−1591.

    Google Scholar

    [18] 薛栗尹, 李萍, 王胜利, 等. 干旱区工矿型绿洲城郊农田土壤氟的形态分布特征及其影响因素研究——以白银绿洲为例[J]. 农业环境科学学报, 2012, 31(12): 2407−2414.

    Google Scholar

    Xue L Y, Li P, Wang S L, et al. Chemical forms of fluorine and influential factors in the mining areas of oases, Gansu Province, China[J]. Journal of Agro-Environment Science, 2012, 31(12): 2407−2414.

    Google Scholar

    [19] Loganathan P, Gray C W, Hedley M J, et al. Total and soluble fluorine concentration in relation to properties of soil in New Zealand[J]. European Journal of Soil Science, 2006, 57(3): 411−421. doi: 10.1111/j.1365-2389.2005.00751.x

    CrossRef Google Scholar

    [20] 李张伟. 粤东凤凰山茶区土壤氟化学形态特征及其影响因素[J]. 环境化学, 2011, 30(8): 1468−1473.

    Google Scholar

    Li Z W. Chemical forms of fluorine in soils from 12 tea gardens of Fenghuang Moutain, east of Guangdong Province[J]. Environmental Chemistry, 2011, 30(8): 1468−1473.

    Google Scholar

    [21] 段文, 石友昌. 土壤和岩石矿物中氟元素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 72−88.

    Google Scholar

    Duan W, Shi Y C. A review of research progress on analysis and testing technology of fluorine in soil and rock minerals.[J]. Rock and Mineral Analysis, 2023, 42(1): 72−88.

    Google Scholar

    [22] 王凌霞, 付庆灵, 胡红青, 等. 湖北茶园茶叶氟含量及土壤分组[J]. 环境化学, 2011, 30(3): 662−667.

    Google Scholar

    Wang L X, Fu Q L, Hu H Q, et al. Fluorine content in tea leaf and fluorine fractionation in soil of tea gardens in Hubei Province[J]. Environmental Chemistry, 2011, 30(3): 662−667.

    Google Scholar

    [23] 徐温新, 李艳, 代允超, 等. 影响小白菜铅吸收的土壤因素和预测模型研究[J]. 农业环境科学学报, 2018, 37(8): 1584−1591.

    Google Scholar

    Xu W X, Li Y, Dai Y C, et al. Determination and prediction of lead uptaked by Brassica chinensis[J]. Journal of Agro-Environment Science, 2018, 37(8): 1584−1591.

    Google Scholar

    [24] 于群英, 李孝良, 汪建飞, 等. 安徽省土壤氟含量及其赋存特征[J]. 长江流域资源与环境, 2013, 22(7): 915−922.

    Google Scholar

    Yu Q Y, Li X L, Wang J F, et al. Content of fluorine and characteristics of fluorine forms in soils of Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2013, 22(7): 915−922.

    Google Scholar

    [25] 李静, 谢正苗, 徐建民, 等. 我国氟的土壤环境质量标准与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 195−199.

    Google Scholar

    Li J, Xie Z M, Xu J M, et al. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 195−199.

    Google Scholar

    [26] 冯雪, 肖斌. 陕西茶园茶叶氟含量及其影响因素[J]. 西北农业学报, 2011, 20(1): 109−113.

    Google Scholar

    Feng X, Xiao B. Fluoride content in tea leaf and its influence factors in Shaanxi Province[J]. Acta Agricultural Boreali-Occidentalis Sinica, 2011, 20(1): 109−113.

    Google Scholar

    [27] Lan D, Wu D S, Li P, et al. Influence of high-fluorine environmental back-ground on crops and human health in hot spring-type fluorosis-diseased areas[J]. Chinese Journal of Geochemistry, 2008, 4: 335−341.

    Google Scholar

    [28] 刘璇, 梁秀娟, 肖霄, 等. pH对吉林西部湖泊底泥中不同形态氟迁移转化的影响的实验研究[J]. 环境污染与防治, 2011, 33(6): 19−22.

    Google Scholar

    Liu X, Liang X J, Xiao X, et al. Experimental study on the impact of pH on the migration and transformation of various forms of fluorine in the lake mud of the Western Jilin[J]. Environmental Pollution & Control, 2011, 33(6): 19−22.

    Google Scholar

    [29] 于群英, 慈恩, 杨林章. 皖北地区土壤中不同形态氟含量及其影响因素[J]. 应用生态学报, 2007, 18(6): 1333−1334.

    Google Scholar

    Yu Q Y, Ci E, Yang L Z, et al. Contents of different soil fluorine forms in North Anhui and their affecting factors[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1333−1334.

    Google Scholar

    [30] 袁连新, 胡歌鸣. 农业土壤中水溶性氟的分布特征与影响因素分析——以湖北荆州为例[J]. 环境科学与技术, 2011, 34(7): 191−194.

    Google Scholar

    Yuan L X, Hu G M. Spatial distribution characteristics and impact factors of water-soluble fluorine in agricultural soils—A case study of Jingzhou City, Hubei Province[J]. Environmental Science & Technology, 2011, 34(7): 191−194.

    Google Scholar

    [31] 孟昱, 任大军, 张晓晴, 等. 林地土壤氟的形态分布特征及其影响因素[J]. 环境科学与技术, 2019, 42(9): 98−105.

    Google Scholar

    Meng Y, Ren D J, Zhang X Q, et al. Speciation and distribution characteristics of fluorine and its impact factor in forest soil[J]. Environmental Science & Technology, 2019, 42(9): 98−105.

    Google Scholar

    [32] 李永华, 王五一, 杨林生, 等. 陕南土壤中水溶态氟、硒含量及其在生态环境的表征[J]. 环境化学, 2005, 24(3): 279−284.

    Google Scholar

    Li Y H, Wang W Y, Yang L S, et al. Concentration and environmental significance of water soluble-Se and water soluble-F in soils of South Shanxi Province[J]. Environmental Chemistry, 2005, 24(3): 279−284.

    Google Scholar

    [33] 谢忠雷, 邱立民, 董德明, 等. 茶叶中氟含量及其影响因素[J]. 吉林大学自然科学学报, 2001(2): 81−84.

    Google Scholar

    Xie Z L, Qiu L M, Dong D M, et al. Fluoride content of tea leaves and factors affacting the uptake of F from soil into tea leaves[J]. Acta Scientiarium Naturalium Universitatis Jilinensis, 2001(2): 81−84.

    Google Scholar

    [34] 陆丽君, 宗良纲, 罗敏, 等. 江苏典型茶园的茶叶氟含量及其影响因素[J]. 安徽农业科学, 2006, 34(10): 2183−2185.

    Google Scholar

    Lu L J, Zong L G, Luo M, et al. Content of fluoride in tea leaf in Jiangsu Province and its affecting factor[J]. Journal of Anhui Agricultural Sciences, 2006, 34(10): 2183−2185.

    Google Scholar

    [35] 黄春雷, 丛源, 陈岳龙, 等. 晋南临汾—运城盆地土壤氟含量及其影响因素[J]. 地质通报, 2007, 26(7): 878−885.

    Google Scholar

    Huang C L, Cong Y, Chen Y L, et al. Fluorine content in soils of the Linfen—Yuncheng Basin, Southern Shanxi, China, and its influence factors[J]. Geological Bulletin of China, 2007, 26(7): 878−885.

    Google Scholar

    [36] 徐仁扣, 王亚运, 赵安珍, 等. 低分子量有机酸对可变电荷土壤吸附性氟解吸的影响[J]. 土壤, 2003, 35(5): 392−396.

    Google Scholar

    Xu R K, Wang Y Y, Zhao A Z, et al. Effect of low-molecular-weight organic acids on desorption of adsorbed F form variable charge soil[J]. Soils, 2003, 35(5): 392−396.

    Google Scholar

    [37] Pan J T, Li D Q, Zhu J J, et al. Aluminum relieves fluoride stress through stimulation of organic acid production in Camellia sinensis[J]. Physiology and Molecular Biology of Plants, 2020, 26(6): 1127−1137. doi: 10.1007/s12298-020-00813-2

    CrossRef Google Scholar

    [38] 谢忠雷, 房春生, 孙文田, 等. 柠檬酸-铝-氟交互作用对茶园土壤氟吸附特征及形态分布的影响[J]. 农业环境科学学报, 2007, 26(6): 2271−2286.

    Google Scholar

    Xie Z L, Fang C S, Sun W T, et al. Effects of interaction of citric acid-aluminum-fluoride on the adsorption characteristics and distribution of fluorride in tea garden soil[J]. Journal of Agro-Environment Science, 2007, 26(6): 2271−2286.

    Google Scholar

    [39] 宋文恩, 陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(EC x)及其预测模型[J]. 中国农业科学, 2014, 47(17): 3434−3443.

    Google Scholar

    Song W E, Chen S B. The toxicity thresholds (EC x) of cadmium (Cd) to rice cultivars as determined by root-elongation tests in soils and its predicted models[J]. Scientia Agricultura Sinica, 2014, 47(17): 3434−3443.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article Metrics

Article views(909) PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint