Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 3
Article Contents

WANG Yong, LI Zijing, LIU Lin, LI Guowei. Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area[J]. Rock and Mineral Analysis, 2024, 43(3): 524-532. doi: 10.15898/j.ykcs.202306270081
Citation: WANG Yong, LI Zijing, LIU Lin, LI Guowei. Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area[J]. Rock and Mineral Analysis, 2024, 43(3): 524-532. doi: 10.15898/j.ykcs.202306270081

Optimization of Sulfur Determination in Vanadium-Titanium Magnetite Ore in the Panxi Area

More Information
  • Sulfur is an important quality and environmental indicator in vanadium-titanium magnetite ore, so the accurate measurement of sulfur is of great significance for subsequent process control and pollution evaluation. There are some problems such as integration delay and poor precision in low sulfur when measuring sulfur in vanadium-titanium magnetite ore with the high-frequency combustion infrared absorption method. To solve the problems, scanning electron microscope (SEM) and infrared absorption carbon-sulfur analyzer with programmed heating function were used, and the analysis conditions such as power, flux and addition sequence, and sample mass were optimized. The optimized experimental conditions were as follows: analysis power of 95%, iron particle flux of 0.30g, copper particle flux of 0.20g, and tungsten particle flux of 1.0g, sample mass of 0.30g. The order of addition is iron-copper-sample-tungsten. The optimized method was used to measure sulfur content, and the results of sulfur in the standard sample were within the allowable error, with satisfactory accuracy. The relative standard deviation (RSD) in samples was 0.40%−0.67%, with satisfactory precision. The range of the method was 0.0004%−1.52%, and the detection limit was 0.0004%.

  • 加载中
  • [1] 王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019, 48(6): 33−37.

    Google Scholar

    Wang X, Han Y X, Li Y J, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019, 48(6): 33−37.

    Google Scholar

    [2] 肖仪武. 钒钛磁铁矿矿石基因特性及其对选铁的影响[J]. 矿产综合利用, 2021, 42(5): 198−201. doi: 10.3969/j.issn.1000-6532.2021.05.033

    CrossRef Google Scholar

    Xiao Y W. Ore genetic characteristics of vanadium-titanium magnetite and its influence for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021, 42(5): 198−201. doi: 10.3969/j.issn.1000-6532.2021.05.033

    CrossRef Google Scholar

    [3] 梅燕, 单永奎, 何科瀚. 攀西钒钛磁铁矿分布特征及采矿选矿技术[J]. 西昌学院学报(自然科学版), 2023, 37(1): 58−65.

    Google Scholar

    Mei Y, Shan Y K, He K H. Distribution features of vanadium-titano magnetite in Panxi regions and its mining and beneficiating techniques[J]. Journal of Xichang College (Natural Science Edition), 2023, 37(1): 58−65.

    Google Scholar

    [4] 张贵山, 邱红信, 彭仁, 等. 扬子板块西缘攀西地区白草矿区黄铁矿标型元素特征及其指示意义[J]. 地球科学与环境学报, 2021, 43(2): 262−275.

    Google Scholar

    Zhang G S, Qiu H X, Peng R, et al. Characteristics of pyrite typomorphic elements in Baicao mining area of Panzhihua—Xichang region, the western margin of Yangtze Plate, China and their indication[J]. Journal of Earth Sciences and Environment, 2021, 43(2): 262−275.

    Google Scholar

    [5] 钟祥, 史志新, 高健. 攀西地区白马钒钛磁铁矿工艺矿物学探讨[J]. 冶金分析, 2021, 41(10): 29−35.

    Google Scholar

    Zhong X, Shi Z X, Gao J. Discussion on process mineralogy of Baima vanadium-titanium magnetite in Panxi area[J]. Metallurgical Analysis, 2021, 41(10): 29−35.

    Google Scholar

    [6] 薛忠言, 曾令熙, 刘应冬. 太和钒钛磁铁矿中硫化物的工艺矿物学研究[J]. 矿产综合利用, 2019, 40(3): 78−81. doi: 10.3969/j.issn.1000-6532.2019.03.018

    CrossRef Google Scholar

    Xue Z Y, Zeng L X, Liu Y D. Process mineralogy of the sulfide in the Taihe vanadium titano magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(3): 78−81. doi: 10.3969/j.issn.1000-6532.2019.03.018

    CrossRef Google Scholar

    [7] 邱红信, 张贵山, 温汉捷, 等. 攀西会理县白草钒钛磁铁矿床磁黄铁矿矿物学特征及成因[J]. 矿物学报, 2021, 41(3): 245−257.

    Google Scholar

    Qiu H X, Zhang G S, Wen H J, et al. Mineralogical characteristics and genesis of pyrrhotite in the Baicao V-Ti magnetite deposit in the Huili area of the Panzhihua—Xichang rift[J]. Acta Mineralogica Sinica, 2021, 41(3): 245−257.

    Google Scholar

    [8] 罗金华, 武昭妤, 李俊翰, 等. 红格钒钛磁铁矿中硫化物的矿物学特征研究[J]. 钢铁钒钛, 2015, 36(3): 57−61. doi: 10.7513/j.issn.1004-7638.2015.03.012

    CrossRef Google Scholar

    Luo J H, Wu S Y, Li J H, et al. Mineralogical characteristics of sulfide in Hongge vanadium titano-magnetite[J]. Iron Steel Vanadium Titanium, 2015, 36(3): 57−61. doi: 10.7513/j.issn.1004-7638.2015.03.012

    CrossRef Google Scholar

    [9] 张贵山, 邱红信, 温汉捷, 等. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740−1752.

    Google Scholar

    Zhang G S, Qiu H X, Wen H J, et al. Geochemical characteristics and geological significance of cobalt in cobalt-rich sulfide of Hongge V-Ti magnetite ore field, Panxi[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1740−1752.

    Google Scholar

    [10] 吴宁. 攀西某钒钛磁铁精矿浮选脱硫实验[J]. 矿产综合利用, 2022, 43(3): 126−131. doi: 10.3969/j.issn.1000-6532.2022.03.022

    CrossRef Google Scholar

    Wu N. Experimental study on the flotation desulfurization of vanadium titanium magnetite concentrate in Panxi[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 126−131. doi: 10.3969/j.issn.1000-6532.2022.03.022

    CrossRef Google Scholar

    [11] 李潇雨, 周满赓, 王婧, 等. 攀西钒钛磁铁矿硫族元素工艺矿物学研究[J]. 中国矿业, 2016, 25(1): 118−124, 134. doi: 10.3969/j.issn.1004-4051.2016.01.025

    CrossRef Google Scholar

    Li X Y, Zhou M G, Wang Q, et al. Craft mineralogy research of chalcogens in Panxi vanadium-titanium magnetite[J]. China Mining Magazine, 2016, 25(1): 118−124, 134. doi: 10.3969/j.issn.1004-4051.2016.01.025

    CrossRef Google Scholar

    [12] 李磊, 金建文, 肖仪武, 等. 影响攀西某磁铁矿精矿品质的矿物学因素分析[J]. 矿产综合利用, 2021, 42(4): 193−196. doi: 10.3969/j.issn.1000-6532.2021.04.031

    CrossRef Google Scholar

    Li L, Jin J W, Xiao Y W, et al. Researches of mineralogical factors affecting the quality of a magnetite concentrate in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2021, 42(4): 193−196. doi: 10.3969/j.issn.1000-6532.2021.04.031

    CrossRef Google Scholar

    [13] 钟祥, 陈福林, 史志新, 等. 矿物自动分析系统在攀西某矿区钒钛磁铁矿工艺矿物学上的应用[J]. 冶金分析, 2022, 42(7): 62−70.

    Google Scholar

    Zhong X, Chen F L, Shi Z X, et al. Application of advanced mineral identification and characterization system in the process mineralogy of vanadium-titanium magnetite in a mining area in Panxi[J]. Metallurgical Analysis, 2022, 42(7): 62−70.

    Google Scholar

    [14] 翟雨可, 常自勇, 王晓莉, 等. 攀西地区钒钛磁铁矿石弱磁选工序前浮选硫钴的探讨[J]. 金属矿山, 2022, 51(11): 107−114.

    Google Scholar

    Zhai Y K, Chang Z Y, Wang X L, et al. Discussion on the flotation recovery of sulfur and cobalt before low intensity magnetic separation of vanadium and titanium magnetite ore in Panxi area[J]. Metal Mine, 2022, 51(11): 107−114.

    Google Scholar

    [15] 刘志雄. 白马钒钛磁铁矿提质降杂研究及工业实践[J]. 钢铁钒钛, 2022, 43(3): 104−110. doi: 10.7513/j.issn.1004-7638.2022.03.017

    CrossRef Google Scholar

    Liu Z X. Research and industrial practice on improving quality and reducing impurities of Baima vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2022, 43(3): 104−110. doi: 10.7513/j.issn.1004-7638.2022.03.017

    CrossRef Google Scholar

    [16] 冀成庆, 杨耀辉, 徐璐, 等. 攀西钒钛磁铁矿伴生硫资源综合利用及其低碳发展意义[J]. 矿产综合利用, 2023, 44(4): 19−26.

    Google Scholar

    Ji C Q, Yang Y H, Xu L, et al. Comprehensive utilization of associated sulfur resources of Panxi vanadium titanium magnetite and its significance for low-carbon development[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 19−26.

    Google Scholar

    [17] 张耀, 孙刚, 王琪, 等. 钒钛磁铁矿区农用地污染特征及风险评价[J]. 环境科学与技术, 2022, 45(5): 217−225.

    Google Scholar

    Zhang Y, Sun G, Wang Q, et al. Pollution characteristics of farmland in vanadium-titano magnetite mining area and relevant health risk assessment[J]. Environmental Science & Technology, 2022, 45(5): 217−225.

    Google Scholar

    [18] 田松, 徐华, 唐碧玉, 等. 燃烧-碘量法测定金矿石中的硫含量[J]. 矿产与地质, 2023, 37(1): 191−196.

    Google Scholar

    Tian S, Xu H, Tang B Y, et al. Determination of sulfur content in gold ore sample by combustion-iodine analysis method[J]. Mineral Resources and Geology, 2023, 37(1): 191−196.

    Google Scholar

    [19] 乐胜锋, 王宁, 刘伟丽, 等. 管式炉燃烧-离子色谱法测定石墨烯粉体中氟、氯、溴、硫元素的含量[J]. 理化检验(化学分册), 2023, 59(1): 79−83.

    Google Scholar

    Le S F, Wang N, Liu W L, et al. Determination of fluorine, chlorine, bromine and sulfur elements in grapheme powder by ion chromatography with tube furnace combustion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(1): 79−83.

    Google Scholar

    [20] 石友昌, 陈贵仁, 赵萌生, 等. 酸溶-电感耦合等离子体发射光谱法和燃烧-红外吸收法测定不同类型地球化学样品中的硫[J]. 岩矿测试, 2022, 41(4): 663−672. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204015

    CrossRef Google Scholar

    Shi Y C, Chen G R, Zhao M S, et al. Determination of sulfur in different types of geochemical samples by ICP-OES with acid dissolution and combustion-infrared absorption spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663−672. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204015

    CrossRef Google Scholar

    [21] 聂高升, 石友昌, 阿米娜·胡吉, 等. 高频红外碳硫仪测定区域地球化学样品中的硫[J]. 中国无机分析化学, 2023, 13(11): 1215−1220. doi: 10.3969/j.issn.2095-1035.2023.11.009

    CrossRef Google Scholar

    Nie G S, Shi Y C, Amina H, et al. Determination of sulfur in regional geochemistry samples by high-frequency infrared carbon and sulfur analyzer[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1215−1220. doi: 10.3969/j.issn.2095-1035.2023.11.009

    CrossRef Google Scholar

    [22] 冯丽丽, 王成林, 管嵩, 等. 高频燃烧红外吸收法测定萤石中的硫[J]. 中国无机分析化学, 2023, 13(5): 484−489. doi: 10.3969/j.issn.2095-1035.2023.05.012

    CrossRef Google Scholar

    Feng L L, Wang C L, Guan S, et al. Determination of sulfur in fluorite by high frequency combustion infrared absorption[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 484−489. doi: 10.3969/j.issn.2095-1035.2023.05.012

    CrossRef Google Scholar

    [23] 石象, 罗燕生. 高频燃烧红外吸收法测定钨精矿中硫含量[J]. 中国钨业, 2022, 37(6): 75−79. doi: 10.3969/j.issn.1009-0622.2022.06.011

    CrossRef Google Scholar

    Shi X, Luo Y S. Determination of sulfur contents in tungsten concentrate by high frequency combustion infrared absorption method[J]. China Tungsten Industry, 2022, 37(6): 75−79. doi: 10.3969/j.issn.1009-0622.2022.06.011

    CrossRef Google Scholar

    [24] 耶曼, 李婧, 马怡飞, 等. 高频红外碳硫仪快速测定镍铅锌矿石中的硫含量[J]. 岩矿测试, 2022, 41(4): 680−687. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204017

    CrossRef Google Scholar

    Ye M, Li Q, Ma Y F, et al. Rapid determination of sulfur in nickel-lead-zinc ore by high-frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2022, 41(4): 680−687. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204017

    CrossRef Google Scholar

    [25] 费发源, 马兴娟, 范志平, 等. 高频燃烧红外吸收光谱法测定一水硬铝石型高硫铝土矿中的硫[J]. 湿法冶金, 2022, 41(6): 558−561.

    Google Scholar

    Fei F Y, Ma X J, Fan Z P, et al. Determination of sulfur in diaspore bauxite containing sulfur by high frequency combustion-infrared absorption spectrometry[J]. Hydrometallurgy of China, 2022, 41(6): 558−561.

    Google Scholar

    [26] 董礼男, 周莉莉, 朱春要, 等. 高频感应燃烧红外吸收法测定轧钢含油污泥中硫含量[J]. 中国测试, 2022, 48(10): 68−72.

    Google Scholar

    Dong L N, Zhou L L, Zhu C Y, et al. Determination of sulfur contents in rolling oily sludge by high frequency induction combustion infrared absorption method[J]. China Measurement & Testing Technology, 2022, 48(10): 68−72.

    Google Scholar

    [27] 罗琼辉, 郑浩, 赵朝辉. 高频燃烧-红外吸收光谱法测定钒钛磁铁矿中硫的含量[J]. 理化检验(化学分册), 2023, 59(10): 1218−1220.

    Google Scholar

    Luo Q H, Zheng H, Zhao C H. Determination of sulfur content in vanadium titanium magnetite by high-frequency combustion infrared absorption spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(10): 1218−1220.

    Google Scholar

    [28] 张高庆, 王录锋. 高频燃烧红外吸收法测定钒钛高炉渣中硫[J]. 冶金分析, 2022, 42(4): 14−18.

    Google Scholar

    Zhang G Q, Wang L F. Determination of sulfur in vanadium-titanium bearing slag by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2022, 42(4): 14−18.

    Google Scholar

    [29] 惠博, 杨耀辉, 陈伟, 等. 安康地区某钒钛磁铁矿工艺矿物学研究[J]. 钢铁钒钛, 2020, 41(6): 88−93, 123. doi: 10.7513/j.issn.1004-7638.2020.06.016

    CrossRef Google Scholar

    Hui B, Yang Y H, Chen W, et al. Study on process mineralogy of a titanium magnetite in Ankang area[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 88−93, 123. doi: 10.7513/j.issn.1004-7638.2020.06.016

    CrossRef Google Scholar

    [30] 王立平, 杨明灵, 赵海珍, 等. 承德钒钛磁铁矿钒和钛物相的联测分析方法[J]. 岩矿测试, 2013, 32(1): 84−89. doi: 10.3969/j.issn.0254-5357.2013.01.015

    CrossRef Google Scholar

    Wang L P, Yang M L, Zhao H Z, et al. Determination method of vanadium and titanium phases for Chengde vanadium titanium magnetite[J]. Rock and Mineral Analysis, 2013, 32(1): 84−89. doi: 10.3969/j.issn.0254-5357.2013.01.015

    CrossRef Google Scholar

    [31] 曾磊, 陈倩倩, 刘攀, 等. 高频燃烧红外吸收法在无机固体材料碳/硫分析标准中的应用[J]. 冶金分析, 2023, 43(5): 32−45.

    Google Scholar

    Zeng L, Chen Q Q, Liu P, et al. Application of high frequency combustion infrared absorption method for analysis standard of carbon and sulfur in inorganic solid material[J]. Metallurgical Analysis, 2023, 43(5): 32−45.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(32) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint