Citation: | SONG Xinyi, XU Chunxue, AN Ziyi, SUN Hongbin, CHEN Zongding, LIU Wei, ZHENG Yuqi. Discussion on the Analysis Method of Iodide in Natural Water Samples[J]. Rock and Mineral Analysis, 2023, 42(3): 587-597. doi: 10.15898/j.ykcs.202211230224 |
As the main source of iodine intake, water is of practical significance to detect the content of iodide accurately. At present, the common methods for the analysis of iodide in water samples include ion chromatography, gas chromatography, colorimetry, spectrophotometry. The analysis results of different methods can be affected by the actual sample matrix and experimental conditions. Our project team organized 38 laboratories to determine the content of iodide in natural water samples by ion chromatography, starch spectrophotometry, catalytic reduction spectrophotometry, and inductively coupled plasma-mass spectrometry (ICP-MS), the results showed that there were significant differences among the measured values by different methods, and the data were obviously dispersed.
To discuss the reasons for the differences between the results of different methods and give suggestions on the selection of iodide analysis methods under different conditions, based on the principles and conditions of each method.
Four analysis methods, including ion chromatography, starch spectrophotometry, catalytic reduction spectrophotometry, and ICP-MS, were used to determine the content of iodide of the groundwater sample by 38 laboratories. High performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) was used to determine the content of iodide by our own laboratory.
(1) HPLC-ICP-MS can be used to effectively separate iodide and iodate ions in water samples. Through the quality control of the experimental process by blank samples, standard reference materials and replicate samples, the analytical results of this method were accurate and reliable. The determination results of iodide in JSH-2 samples were 78.32μg/L. (2) The determination values of iodide by ion chromatography (83.38μg/L) were consistent with those by HPLC-ICP-MS (78.32μg/L). However, the data of ion chromatography between different laboratories were obviously dispersed. The determination values of iodide by the starch spectrophotometry (92.95μg/L), catalytic reduction spectrophotometry (101.84μg/L) and ICP-MS (103.13μg/L) were higher than those by HPLC-ICP-MS. (3) The reasons for the differences between the results of different methods were discussed, based on the principles and conditions of each method: ① The determination results of ion chromatography may be affected by the selection of experimental conditions, such as sample pretreatment, chromatographic column and detector, and other interfering components. ② It is not considered whether there is iodate ion in the sample itself in the starch spectrophotometry. Therefore, when there are iodate ions in the water sample, the determination result is actually the total content of inorganic iodine. ③ The standard working curve of the catalytic reduction spectrophotometry is bent downward as a whole and does not show a good linear relationship. Therefore, when the response value of iodide is high, the concentration value will be high. ④ ICP-MS is only used to determine the total content of elements, and cannot be used for elemental speciation analysis. There are iodate ions in the samples of this experiment, so the determination results of ICP-MS should be the total content of iodine, rather than the content of iodide.
When iodate ions are present in water samples, starch spectrophotometry and ICP-MS may lead to a high result of iodide determination. Among them, starch spectrophotometry is usually suitable for samples with an iodide concentration of 25-500μg/L, and ICP-MS can be combined with other separation techniques to improve method selectivity. When iodate ions are present in water samples, catalytic reduction spectrophotometry and ion chromatography can be used to analyze the concentration of iodide, but the influence of sample concentration level, matrix interference components, experimental conditions and other factors should be considered. HPLC-ICP-MS can be applied to the quantitative analysis of iodine species in water samples, which can avoid the influence of iodate ions on the accuracy of iodide determination results.
[1] | 张伟娜. 环境水体中碘的存在形态及其影响因素研究[D]. 长春: 吉林大学, 2012. Zhang W N. Studies on speciation and influencing factors of iodine in environmental water system[D]. Changchun: Jilin University, 2012. |
[2] | 侯艳霞,刘丽萍,杜振霞. 高效液相色谱-电感耦合等离子体质谱法测定饮用水中碘酸根和碘离子[J]. 理化检验(化学分册),2011,47(11):1262−1265. Hou Y X,Liu L P,Du Z X. HPLC-ICP-MS determination of iodate and iodide in drinking water[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(11):1262−1265. |
[3] | 宫霞,蓝倩云,黄玲. 上海市饮用水中微量元素碘含量的检测与分析[J]. 环境工程,2015,33(S1):989−991. Gong X,Lan Q Y,Huang L. Detection and analysis of trace elements in Shanghai iodine content in drinking water[J]. Environmental Engineering, 2015, 33(S1):989−991. |
[4] | 陈惠琴,林梅艳,张琦,等. 直接滴定法检测碘盐应注意的问题[J]. 医学动物防制,2008,24(3):237−239. doi: 10.3969/j.issn.1003-6245.2008.03.041 Chen H Q,Lin H Y,Zhang Q,et al. Problems in direct titration method for iodized salt detection[J]. Journal of Medical Pest Control, 2008, 24(3):237−239. doi: 10.3969/j.issn.1003-6245.2008.03.041 |
[5] | 谢复青. 银量法测定混合卤化物中的碘离子[J]. 理化检验(化学分册),1995,31(3):153−156. Xie F Q. Determination of iodine ion in mixed halide by silver metric method[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 1995, 31(3):153−156. |
[6] | 杨娟,张卫兵,顾俊,等. 过硫酸铵-砷铈催化分光光度法测定强化碘盐中碘的含量[J]. 食品科技,2022,47(8):272−276. doi: 10.3969/j.issn.1005-9989.2022.8.spkj202208041 Yang J,Zhang W B,Gu J,et al. Determination of iodine in fortifified iodine salt by ammonium persulfate-arsenic-cerium catalytic spectrophotometry[J]. Food Science and Technology, 2022, 47(8):272−276. doi: 10.3969/j.issn.1005-9989.2022.8.spkj202208041 |
[7] | 李叶,魏竞智,夏卫文,等. 砷铈催化分光光度法测定盐碘含量的方法研究[J]. 中华地方病学杂志,2022,41(4):323−326. doi: 10.3760/cma.j.cn231583-20210805-00253 Li Y,Wei J Y,Xia W W,et al. Determination of iodine in salt by arsenic-cerium catalytic spectrophotometry[J]. Chinese Journal Endemiolgy, 2022, 41(4):323−326. doi: 10.3760/cma.j.cn231583-20210805-00253 |
[8] | Błażewicz A,Klatka M,Dolliver W,et al. Determination of total iodine in serum and urine samples by ion chromatography with pulsed amperometric detection—Studies on analyte loss,optimization of sample preparation procedures,and validation of analytical method[J]. Journal of Chromatography B, 2014, 962:141−146. doi: 10.1016/j.jchromb.2014.05.022 |
[9] | Moreda-Pineiro A,Romarís-Hortas V,Bermejo-Barrera P. A review on iodine speciation for environmental,biological and nutrition fields[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(11):2107−2152. doi: 10.1039/c0ja00272k |
[10] | Milinovic J,Rodrigues C,Diniz M,et al. Determination of total iodine content in edible seaweeds:Application of inductively coupled plasma-atomic emission spectroscopy[J]. Algal Research, 2021, 53:102149. doi: 10.1016/j.algal.2020.102149 |
[11] | Pan Y,Zhang X. Total organic iodine measurement:A new approach with UPLC/ESI-MS for off-line iodide separation/detection[J]. Water Research, 2013, 47(1):163−172. doi: 10.1016/j.watres.2012.09.040 |
[12] | Romarís-Hortas V,Moreda-Piñeiro A,Bermejo-Barrera P. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination[J]. Talanta, 2009, 79(3):947−952. doi: 10.1016/j.talanta.2009.05.036 |
[13] | 郑聪,王金花,高峰,等. 电感耦合等离子体质谱法测定食用藻类植物中碘含量[J]. 食品科学,2011,32(8):202−205. Zheng C,Wang J H,Gao F,et al. Determination of iodine content in edible algae by inductively coupled plasma-mass spectrometry[J]. Food Science, 2011, 32(8):202−205. |
[14] | 刘崴,杨红霞,李冰. 碘分析方法研究进展[J]. 岩矿测试,2008,27(2):127−136. doi: 10.3969/j.issn.0254-5357.2008.02.012 Liu W,Yang H X,Li B. Recent development of method for iodine analysis[J]. Rock and Mineral Analysis, 2008, 27(2):127−136. doi: 10.3969/j.issn.0254-5357.2008.02.012 |
[15] | 陈俊良,杨红霞,刘崴,等. HPLC-ICP-MS法研究内蒙古锡盟和新疆塔城高碘地区地下水的总碘及碘形态特征[J]. 岩矿测试,2017,36(6):614−623. doi: 10.15898/j.cnki.11-2131/td.201707040114 Chen J L,Yang H X,Liu W,et al. Study on the total iodine and iodine speciation characteristics in Xilingol League,Inner Mongolia and Tacheng,Xinjiang high iodine area by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2017, 36(6):614−623. doi: 10.15898/j.cnki.11-2131/td.201707040114 |
[16] | Kanoh H, Konishi T. Analytical methods for iodine and iodides[M]//Iodine Chemistry and Applications, 2014: 15−23. |
[17] | 李伟,熊健,布多,等. 光度法测定食盐中碘含量[J]. 应用化工,2017,46(4):801−803. doi: 10.16581/j.cnki.issn1671-3206.20170222.038 Li W,Xiong J,Bu D,et al. Spectrophotometric method determination of iodine in edible salt[J]. Applied Chemical Industry, 2017, 46(4):801−803. doi: 10.16581/j.cnki.issn1671-3206.20170222.038 |
[18] | 杨小媛,蔡羽嘉,范柯. 砷铈催化分光光度法测定人体尿样中碘含量方法研究[J]. 中国卫生检验杂志,2014,24(12):1694−1697. Yang X Y,Cai Y J,Fan K. Research on a method for determination of urinary iodine by As3+-Ce4+ catalytic spectrophotometry[J]. Chinese Journal of Health Laboratory Technology, 2014, 24(12):1694−1697. |
[19] | 薛磊,张谦栋,李家宁,等. 对生活饮用水中碘化物高浓度比色测定方法的探讨[J]. 山东化工,2022,51(15):125−128. doi: 10.3969/j.issn.1008-021X.2022.15.037 Xue L,Zhang Q D,Li J N,et al. Discussion on the colorimetric determination method of high concentration of iodide in domestic drinking water[J]. Shandong Chemical Industry, 2022, 51(15):125−128. doi: 10.3969/j.issn.1008-021X.2022.15.037 |
[20] | 薛智凤,王高红,尚卫,等. 抑制型电导-离子色谱法测定地下水中碘化物[J]. 岩矿测试,2023,42(2):338−345. Xue Z F,Wang G H,Shang W,et al. Determination of iodide in groundwater by suppressed conductance-ion chromatography[J]. Rock and Mineral Analysis, 2023, 42(2):338−345. |
[21] | 杨瑞丰. 地表水中碘化物含量测定方法研究[J]. 水资源开发与管理,2019,42(7):29−32. doi: 10.16616/j.cnki.10-1326/TV.2019.07.06 Yang R F. Study on determination method of iodine content in surface water[J]. Water Resources Development and Management, 2019, 42(7):29−32. doi: 10.16616/j.cnki.10-1326/TV.2019.07.06 |
[22] | 刘立萍,陈卫强,罗丹,等. 气相色谱法测定矿泉水中的碘化物[J]. 食品安全质量检测学报,2016,7(12):4786−4789. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.12.021 Liu L P,Chen W Q,Luo D,et al. Determination of iodide in mineral water by gas chromatography[J]. Journal of Food Safety and Quality, 2016, 7(12):4786−4789. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.12.021 |
[23] | Chen Z,Megharaj M,Naidu R. Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry[J]. Talanta, 2007, 72(5):1842−1846. doi: 10.1016/j.talanta.2007.02.014 |
[24] | 张翼,徐子刚,姚琪,等. 离子色谱-电感耦合等离子体质谱联用测定不同形态碘元素[J]. 浙江大学学报(理学版),2009,36(4):439−441. doi: 10.3785/j.issn.1008-9497.2009.04.017 Zhang Y,Xu Z G,Yao Q,et al. Determination of iodine species by ion chromatography with inductively coupled plasma mass spectrometry[J]. Journal of Zhejiang University (Science Edition), 2009, 36(4):439−441. doi: 10.3785/j.issn.1008-9497.2009.04.017 |
[25] | 陈绍占,刘丽萍,张妮娜,等. 饮用水中溴和碘形态的离子色谱-电感耦合等离子体质谱联用测定法[J]. 环境与健康杂志,2016,33(10):920−923. doi: 10.16241/j.cnki.1001-5914.2016.10.021 Chen S Z,Liu L P,Zhang N N,et al. Determination of bromine and iodine species in drinking water by ion chromatography coupled with inductively coupled plasma mass spectrometry[J]. Journal of Environment and Health, 2016, 33(10):920−923. doi: 10.16241/j.cnki.1001-5914.2016.10.021 |
[26] | 刘崴,杨红霞,李冰,等. 高效液相色谱-电感耦合等离子体质谱测定地下水中碘形态稳定性[J]. 分析化学,2007,35(4):571−574. doi: 10.3321/j.issn:0253-3820.2007.04.024 Liu W,Yang H X,Li B,et al. Study on speciation stabilities of iodine in underground water by high performance liquid chromatography-inductively coupled plasma spectrometry[J]. Chinese Journal of Analytical Chemistry, 2007, 35(4):571−574. doi: 10.3321/j.issn:0253-3820.2007.04.024 |
[27] | 胡梦娜,周启星,陈翠红,等. 高效液相色谱-电感耦合等离子体质谱法测定土壤中不同形态的无机碘[J]. 分析测试学报,2019,38(11):1389−1392. doi: 10.3969/j.issn.1004-4957.2019.11.018 Hu M N,Zhou Q X,Chen C H,et al. Determination of different inorganic iodine species in soils by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(11):1389−1392. doi: 10.3969/j.issn.1004-4957.2019.11.018 |
[28] | 杨贤,王斌. 紫外检测离子色谱法测定海水中的碘离子[J]. 中国无机分析化学,2016,6(4):38−40. doi: 10.3969/j.issn.2095-1035.2016.04.010 Yang X,Wang B. Determination of iodine ion in seawater by ion chromatography with ultraviolet detection[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(4):38−40. doi: 10.3969/j.issn.2095-1035.2016.04.010 |
[29] | 刘克纳,牟世芬,柴成文. 离子色谱法测定微量碘的检测器应用研究[J]. 理化检验(化学分册),2001,37(8):337−338,342. Liu K N,Mou S F,Chai C W. The application various detectors to the IC-determination of iodide[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2001, 37(8):337−338,342. |
[30] | 陈玉锋. 油田水中溴、碘离子分析方法的改进和研究[D]. 青海: 中国科学院研究生院(青海盐湖研究所), 2007. Chen Y F. Improvement and research on the determination of iodide, bromide in the oilfield produced water[D]. Qinghai: Qinghai Institute of Salt Lakes, Chinese Academy of Science, 2007. |
[31] | 张会娟,谢雅兰,王朝亚. 测定饮用水中碘化物的含量——离子色谱法和化学法的比较[J]. 城镇供水,2017(6):35−38. doi: 10.3969/j.issn.1002-8420.2017.06.011 Zhang H J,Xie Y L,Wang C Y. Measurement of iodide content in drinking water-comparison of ion chromatography and chemical methods[J]. City and Town Water Supply, 2017(6):35−38. doi: 10.3969/j.issn.1002-8420.2017.06.011 |
[32] | 温权,曾胜波,梁肇海,等. 直接稀释-电感耦合等离子体质谱法测尿中碘[J]. 中国地方病防治,2020,35(2):166−168. Wen Q,Zeng S B,Liang Z H,et al. Direct determination of iodine in urine samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Control of Endemic Disease, 2020, 35(2):166−168. |
[33] | Mesko M F,Toralles I G,Crizel M G,et al. Bromine and iodine determination in edible seaweed by ICP-MS after digestion by microwave-induced combustion[J]. Química Nova, 2014, 37(6):964−968. |
[34] | Macours P,Aubry J C,Hauquier B,et al. Determination of urinary iodine by inductively coupled plasma mass spectrometry[J]. Journal of Trace Elements in Medicine and Biology, 2008, 22(2):162−165. doi: 10.1016/j.jtemb.2008.02.003 |
[35] | Rosen V V,Garber O G,Chen Y. Iodine determination in mineral water using ICP-MS:Method development and analysis of brands available in Israeli stores[J]. Journal of Food Composition and Analysis, 2022, 111:104600. doi: 10.1016/j.jfca.2022.104600 |
[36] | Michalke B,Witte H. Characterization of a rapid and reliable method for iodide biomonitoring in serum and urine based on ion chromatography-ICP-mass spectrometry[J]. Journal of Trace Elements in Medicine and Biology, 2015, 29:63−68. doi: 10.1016/j.jtemb.2014.05.002 |
[37] | Xie R,Johnson W,Spayd S,et al. Arsenic speciation analysis of human urine using ion exchange chromatography coupled to inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2006, 578(2):186−194. doi: 10.1016/j.aca.2006.06.076 |
[38] | Romarís-Hortas V,Bermejo-Barrera P,Moreda-Piñeiro J,et al. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry[J]. Analytica Chimica Acta, 2012, 745:24−32. doi: 10.1016/j.aca.2012.07.035 |
[39] | 郭芳芳,戴超,张书玉. 离子色谱法测定水中碘离子含量[J]. 化工管理,2017(35):192. doi: 10.3969/j.issn.1008-4800.2017.35.172 Guo F F,Dai C,Zhang S Y. Determination of iodide ion content in water by ion chromatography[J]. Chemical Enterprise Management, 2017(35):192. doi: 10.3969/j.issn.1008-4800.2017.35.172 |
[40] | 林立,王海波,史亚利. 二维离子色谱法同时测定环境水样中的碘离子、硫氰酸根和高氯酸根[J]. 色谱,2013,31(3):281−285. doi: 10.3724/SP.J.1123.2012.10034 Lin L,Wang H B,Shi Y L. Determination of iodide,thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography[J]. Chinese Journal of Chromatography, 2013, 31(3):281−285. doi: 10.3724/SP.J.1123.2012.10034 |
[41] | 墨淑敏,梁立娜,蔡亚岐,等. 高效阴离子交换色谱-脉冲安培检测器测定多种基体中痕量碘离子的方法[J]. 分析测试学报,2006,25(1):105−108. doi: 10.3969/j.issn.1004-4957.2006.01.028 Mo S M,Liang L N,Cai Y Q,et al. Determination of trace level of iodide in different matrices by high performance anion exchange chromatography with pulsed amperometric detector[J]. Journal of Instrumental Analysis, 2006, 25(1):105−108. doi: 10.3969/j.issn.1004-4957.2006.01.028 |
Statistic treatment and performance evaluation by interlaboratory comparison.
Chromatogram of two iodine species in mixed standard solution by HPLC-ICP-MS.