Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 4
Article Contents

HE Xuke, LUAN Yan, SUN Xiaohui, CHEN Wei, NIU Aobin, GAO Longqiang. LA-ICP-MS Mapping and Element Distribution Characteristics of Garnet from the Altered Wall-rock of the Gongchangling Iron Deposit in Liaoning Province[J]. Rock and Mineral Analysis, 2023, 42(4): 707-720. doi: 10.15898/j.ykcs.202211070212
Citation: HE Xuke, LUAN Yan, SUN Xiaohui, CHEN Wei, NIU Aobin, GAO Longqiang. LA-ICP-MS Mapping and Element Distribution Characteristics of Garnet from the Altered Wall-rock of the Gongchangling Iron Deposit in Liaoning Province[J]. Rock and Mineral Analysis, 2023, 42(4): 707-720. doi: 10.15898/j.ykcs.202211070212

LA-ICP-MS Mapping and Element Distribution Characteristics of Garnet from the Altered Wall-rock of the Gongchangling Iron Deposit in Liaoning Province

More Information
  • BACKGROUND

    With the advantage of high spatial resolution, low detection limit, and multi-element surface analysis, the mapping technique of laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) provides a new method for mineralogy research, which can display the element distribution characteristics in minerals, and constrain the evolution process of the ore-genesis fluid and ore genesis.  The wall-rocks of magnetite-rich ore from the No.2 mining area of the Gongchangling iron deposit suffered obvious alteration, and the scale of magnetite-rich ore is roughly proportional to intensity of alteration. However, regarding the hydrothermal nature, it is argued for metamorphic or magmatic hydrothermal fluid. The garnet widely occurs in the altered wall-rock, which is closely related to the genesis of the magnetite-rich ore. Thus, by LA-ICP-MS mapping of garnet in the altered wall-rock of Gongchangling magnetite-rich ore, the element composition and distribution characteristics can be used to constrain the evolution process of hydrothermal fluid and the genesis of the magnetite-rich ore.

    OBJECTIVES

    To study the composition and distribution characteristics of major and trace elements in garnet by LA-ICP-MS mapping, and to constrain the evolution process of the ore-forming fluid and the genesis of magnetite-rich ore.

    METHODS

    The LA-ICP-MS mapping technique was applied to garnets from the Gongchangling No.2 mining area by simultaneously using Agilent 7700X inductively coupled plasma-mass spectrometry (ICP-MS) and Analyte Excite 193nm laser ablation system at the laboratory of mineralization and dynamics in Chang’an University, with laser frequencies of 10-20Hz, laser ablation spot sizes of 20-150μm square, laser ablation speeds of 20-150μm/s and laser ablation energy of 5.9J/cm2, within 4 hours. Fifty-one elements (from 7Li to 238U) were chosen for ICP-MS analysis and the dwell time of each element was 6ms. This method adopted an external standard (NIST610) as the calibration standard without an internal standard. The result was semi-quantitative and the color brightness was used to represent the elemental content. The Iolite software can be used to generate multi-elemental pictures and elemental ratio mappings, to facilitate data analysis and interpretation for geologists.

    RESULTS

    (1) LA-ICP-MS mapping indicates that the Si, Al, Fe, La, Ce, Pr and Nd compositions of the centimeter-scale garnet (Grt-1, particle size of 1.5cm×1.5cm) from the altered wall-rock are homogeneous, while the Mg, Mn, Ca, Li, Sc, V, heavy rare earth elements (HREEs) and Y retain the original compositional zonation. Most elements in the smaller garnet (Grt-2, particle size of 0.6cm×0.7cm) are mainly homogenized without zonation.  (2) The two garnets from the altered wall-rock of the Gongchangling iron deposit show different elemental distribution. The centimeter-scale garnets (Grt-1) are more likely to retain the original compositional zonation when the metamorphic temperature is below 600℃. The results of LA-ICP-MS mapping of the centimeter-scale garnet (Grt-1) reveal the element correlations, to better understand the geochemical process in minerals.  (3) The Mg content gradually increases and Mn content gradually decreases from the core to the rim of the garnet, indicating that the formation of the Gongchangling garnet is controlled by equilibrium growth and the formation temperature of the garnet gradually increases from the core to the rim. The Ca content of the garnet increases firstly and then decreases from the core to the rim, indicating that the pressure increases firstly and then decreases, which is consistent with the garnet formed during prograde metamorphism. The δEu anomalies of the garnet decreases firstly and then increases from the core to the rim, indicating that the oxygen fugacity of the metamorphic hydrothermal fluid decreases firstly and then increases. Since the characteristics of HREEs and Y in garnet are consistent with the characteristics of Ca, it is inferred that the distribution of the HREEs and Y is also mainly controlled by pressure.

    CONCLUSIONS

    The centimeter-scale garnet from the Gongchangling altered wall-rock retains the original compositional zonation, and the LA-ICP-MS elemental mapping of the centimeter-scale garnet can be completed within 4 hours. The element distribution in the garnet indicates that the temperature gradually increases, the pressure increases firstly and then decreases, and the oxygen fugacity decreases firstly and then increases in the evolution process of the metamorphic hydrothermal fluid. Thus, it is inferred that the garnet in the altered wall-rock of the Gongchangling magnetite-rich ore was formed in the stage of prograde metamorphism associated with the Jiao—Liao—Ji Belt, and the magnetite-rich ore was derived from the reformation of BIF (low-grade iron ore) by metamorphic hydrothermal fluid.

  • 加载中
  • [1] Miguel G,Charles K,Lawrence D M,et al. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185−205. doi: 10.1016/j.gca.2007.09.033

    CrossRef Google Scholar

    [2] 栾燕,何克,谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7): 1206−1218. doi: 10.12097/j.issn.1671-2552.2019.07.013

    CrossRef Google Scholar

    Luan Y,He K,Tan X J. In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS[J]. Geological Bulletin of China, 2019, 38(7): 1206−1218. doi: 10.12097/j.issn.1671-2552.2019.07.013

    CrossRef Google Scholar

    [3] 栾燕,孙晓辉,刘民武,等. 磁铁矿LA-ICP-MS原位微量元素分析方法研究[J]. 地质科技通报, 2021, 40(2): 167−175.

    Google Scholar

    Luan Y,Sun X H,Liu M W,et al. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167−175.

    Google Scholar

    [4] 涂家润,卢宜冠,孙凯,等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226−238. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202008

    CrossRef Google Scholar

    Tu J R,Lu Y G,Sun K,et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202008

    CrossRef Google Scholar

    [5] 胡靓,张德贤,娄威,等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574.

    Google Scholar

    Hu L,Zhang D X,Lou W,et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsum-salt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.

    Google Scholar

    [6] 汪方跃,葛粲,宁思远,等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422−3436.

    Google Scholar

    Wang F Y,Ge C,Ning S Y,et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422−3436.

    Google Scholar

    [7] Raimondo T,Payne J,Wade B,et al. Trace element mapping by LA-ICP-MS:Assessing geochemical mobility in garnet[J]. Contributions to Mineralogy and Petrology, 2017, 172: 17. doi: 10.1007/s00410-017-1339-z

    CrossRef Google Scholar

    [8] 员媛娇,范成龙,吕喜平,等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    CrossRef Google Scholar

    Yuan Y J,Fan C L,Lyu X P,et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit,Inner Mongolia,China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    CrossRef Google Scholar

    [9] Ubide T,Mckenna C A,Chew D M,et al. High-resolution LA-ICP-MS trace element mapping of igneous minerals:In search of magma histories[J]. Chemical Geology, 2015, 409: 157−168. doi: 10.1016/j.chemgeo.2015.05.020

    CrossRef Google Scholar

    [10] Godet A,Raimondo T,Guilmette C. Atoll garnet:Insights from LA-ICP-MS trace element mapping[J]. Contributions to Mineralogy and Petrology, 2022, 177: 57. doi: 10.1007/s00410-022-01924-7

    CrossRef Google Scholar

    [11] Li D F,Fu Y,Sun X M,et al. LA-ICP-MS trace element mapping:Element mobility of hydrothermal magnetite from the giant Beiya Fe-Au skarn deposit,SW China[J]. Ore Geology Reviews, 2018, 92: 463−474. doi: 10.1016/j.oregeorev.2017.11.027

    CrossRef Google Scholar

    [12] Warren T,Steffen H,Torsten V. Oxygen isotope compositions of iron oxides from high-grade BIF-hosted iron ore deposits of the central Hamersley Province,Western Australia:Constraints on the evolution of hydrothermal fluids[J]. Economic Geology, 2009, 104(7): 1019−1035. doi: 10.2113/econgeo.104.7.1019

    CrossRef Google Scholar

    [13] Lascelles D F. Banded iron formation to high-grade iron ore:A critical review of supergene enrichment models[J]. Australian Journal of Earth Sciences, 2012, 59(8): 1105−1125. doi: 10.1080/08120099.2012.739575

    CrossRef Google Scholar

    [14] 刘军,靳淑韵. 辽宁弓长岭铁矿磁铁富矿的成因研究[J]. 现代地质, 2010, 24(1): 80−88.

    Google Scholar

    Liu J,Jin S Y. Genesis study of magnetite-rich ore in Gongchangling iron deposit,Liaoning[J]. Geoscience, 2010, 24(1): 80−88.

    Google Scholar

    [15] 王恩德,夏建明,赵纯福,等. 弓长岭铁矿床磁铁富矿形成机制探讨[J]. 地质学报, 2012, 86(11): 1761−1772. doi: 10.3969/j.issn.0001-5717.2012.11.005

    CrossRef Google Scholar

    Wang E D,Xia J M,Zhao C F,et al. Forming mechanism of high-grade magnetite bodies in Gongchangling,Liaoning Province[J]. Acta Geologica Sinica, 2012, 86(11): 1761−1772. doi: 10.3969/j.issn.0001-5717.2012.11.005

    CrossRef Google Scholar

    [16] 李厚民,刘明军,李立兴,等. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 岩石学报, 2014, 30(5): 1205−1217.

    Google Scholar

    Li H M,Liu M J,Li L X,et al. SHRIMP U-Pb geochronology of zircons from the garnet-rich altered rocks in the mining area Ⅱ of the Gongchangling iron deposit:Constraints on the ages of the high-grade iron deposit[J]. Acta Petrologica Sinica, 2014, 30(5): 1205−1217.

    Google Scholar

    [17] Li H M,Yang X Q,Li L X,et al. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan—Benxi area,China:Evidence from geology,geochemistry and stable isotopic characteristics[J]. Journal of Asian Earth Sciences, 2015, 113: 998−1016. doi: 10.1016/j.jseaes.2015.02.011

    CrossRef Google Scholar

    [18] Sun X H,Tang H S,Luan Y,et al. Geochronological constraints on the genesis of high-grade iron ore in the Gongchangling BIFs from the Anshan—Benxi area,North China Craton[J]. Ore Geology Reviews, 2020, 122: 103504. doi: 10.1016/j.oregeorev.2020.103504

    CrossRef Google Scholar

    [19] 翟明国,Sills J D,Windley B F. 鞍本地区鞍山群变质矿物及变质作用[J]. 岩石矿物学杂志, 1990, 9(2): 148−158.

    Google Scholar

    Zhai M G,Sills J D,Windley B F. Metamorphic minerals and metamorphism of Anshan Group in Anshan—Benxi area,Liaoning[J]. Acta Petrologica et Mineralogica, 1990, 9(2): 148−158.

    Google Scholar

    [20] 刘明军,李厚民,李立兴,等. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征[J]. 岩矿测试, 2012, 31(6): 1067−1076. doi: 10.15898/j.cnki.11-2131/td.2012.06.006

    CrossRef Google Scholar

    Liu M J,Li H M,Li L X,et al. Petrological and mineralogical characteristics of the skarnoid in No. 2 mining area of the Gongchangling iron deposit,Liaoning,China[J]. Rock and Mineral Analysis, 2012, 31(6): 1067−1076. doi: 10.15898/j.cnki.11-2131/td.2012.06.006

    CrossRef Google Scholar

    [21] Sun X H,Zhu X Q,Tang H S,et al. The Gongchangling BIFs from the Anshan—Benxi area,NE China:Petrological-geochemical characteristics and genesis of high-grade iron ores[J]. Ore Geology Reviews, 2014, 60: 112−125. doi: 10.1016/j.oregeorev.2013.12.017

    CrossRef Google Scholar

    [22] 万渝生,董春艳,颉颃强,等. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1447−1478.

    Google Scholar

    Wan Y S,Dong C Y,Xie H Q,et al. Formation ages of early Precambrian BIFs in the North China Carton:SHRIMP zircon U-Pb dating[J]. Acta Geologica Sinica, 2012, 86(9): 1447−1478.

    Google Scholar

    [23] 张连昌,翟明国,万渝生,等. 华北克拉通前寒武纪BIF铁矿研究:进展与问题[J]. 岩石学报, 2012, 28(11): 3431−3445.

    Google Scholar

    Zhang L C,Zhai M G,Wan Y S,et al. Study of the Precambrian BIF-iron deposits in the North China Craton:Progresses and questions[J]. Acta Petrologica Sinica, 2012, 28(11): 3431−3445.

    Google Scholar

    [24] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 2009, 25(8): 1772−1792.

    Google Scholar

    Zhao G C. Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and dicussion[J]. Acta Petrologica Sinica, 2009, 25(8): 1772−1792.

    Google Scholar

    [25] 杨崇辉,杜利林,宋会侠,等. 华北克拉通古元古代地层划分与对比[J]. 岩石学报, 2018, 34(4): 1019−1057.

    Google Scholar

    Yang C H,Du L L,Song H X,et al. Stratigraphic division and correlation of the Pleoproterozoic strata in the North China Craton:A review[J]. Acta Petrologica Sinica, 2018, 34(4): 1019−1057.

    Google Scholar

    [26] 侯可军. 辽宁鞍山—本溪地区条带状硅铁建造的形成与地球早期大气和硫循环[D]. 北京: 中国地质科学院, 2007: 15−20.

    Google Scholar

    Hou K J. The genesis of the BIFs in Anshan—Benxi area, the Archean atmosphere and sulfur cycle[D]. Beijing: Chinese Academy of Geological Sciences, 2007: 15−20.

    Google Scholar

    [27] 周世泰. 鞍山—本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994: 220-226.

    Google Scholar

    Zhou S T. Geology of banded iron ore in Anshan—Benxi area[M]. Beijing: Geological Publishing House, 1994: 220-226.

    Google Scholar

    [28] 万渝生. 辽宁弓长岭含铁岩系的形成与演化[D]. 北京: 中国地质科学院, 1992: 61-62.

    Google Scholar

    Wan Y S. Formation and evolution of the iron-bearing rock series of Gongchangling area, Liaoning Province[D]. Beijing: Chinese Academy of Geological Sciences, 1992: 61-62.

    Google Scholar

    [29] Dong C Y,Wan Y S,Xie H Q,et al. The Mesoarchean Tiejiashan—Gongchangling potassic granite in the Anshan—Benxi area,North China Craton:Origin by recycling of Paleo- to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies[J]. Lithos, 2017, 290-291: 116−135. doi: 10.1016/j.lithos.2017.08.009

    CrossRef Google Scholar

    [30] 朱凯,刘正宏,徐仲元,等. 弓长岭铁矿蚀变岩及富矿成因[J]. 地学前缘, 2016, 23(5): 235−251. doi: 10.13745/j.esf.2016.05.024

    CrossRef Google Scholar

    Zhu K,Liu Z H,Xu Z Y,et al. Genesis of altered rocks and high-grade iron ore in Gongchangling iron deposit[J]. Earth Science Frontiers, 2016, 23(5): 235−251. doi: 10.13745/j.esf.2016.05.024

    CrossRef Google Scholar

    [31] 沈其韩,宋会侠. 华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题[J]. 岩石学报, 2015, 31(10): 2795−2815.

    Google Scholar

    Shen Q H,Song H X. Progress,prospecting and key scientific problems in origin researches of high-grade iron ore of the banded iron formation (BIF) in the North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2795−2815.

    Google Scholar

    [32] 刘大为,王铭晗,刘素巧,等. 辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(3): 694−705.

    Google Scholar

    Liu D W,Wang M H,Liu S Q,et al. Geochemical characteristics and genesis of band iron formation in No. 2 mining area of Gongchangling iron deposit,Liaoning Province[J]. Journal of Jinlin University (Earth Science Edtion), 2017, 47(3): 694−705.

    Google Scholar

    [33] Sassi R,Harte B,Carswell D A,et al. Trace element distribution in Central Dabie eclogites[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 298−315. doi: 10.1007/s004100000133

    CrossRef Google Scholar

    [34] Caddick M J,Kohn M J. Garnet:Witness to the evolution of destructive plate boundaries[J]. Elements, 2013, 9(6): 427−432. doi: 10.2113/gselements.9.6.427

    CrossRef Google Scholar

    [35] Ague J J,Carlson W D. Metamorphism as garnet sees it:The kinetics of nucleation and growth, equilibration,and diffusional relaxation[J]. Elements, 2013, 9(6): 439−445. doi: 10.2113/gselements.9.6.439

    CrossRef Google Scholar

    [36] 邹屹,陈俊行,吴佳林,等. 变质地质学中的扩散:原理、前沿应用和问题[J]. 岩石学报, 2022, 38(10): 2949−2970. doi: 10.18654/1000-0569/2022.10.04

    CrossRef Google Scholar

    Zou Y,Chen J X,Wu J L,et al. Diffusion in metamorphic geology:Principles,applications,and problems[J]. Acta Petrologica Sinica, 2022, 38(10): 2949−2970. doi: 10.18654/1000-0569/2022.10.04

    CrossRef Google Scholar

    [37] Ganguly J. Cation diffusion kinetics in aluminosilicate garnets and geological applications[J]. Reviews in Mineralogy and Geochemistry, 2010, 72(1): 559−601. doi: 10.2138/rmg.2010.72.12

    CrossRef Google Scholar

    [38] Caddick M J,Konopásek J,Thompson A B. Preservation of garnet growth zoning and the duration of prograde metamorphism[J]. Journal of Petrology, 2010, 51(11): 2327−2347. doi: 10.1093/petrology/egq059

    CrossRef Google Scholar

    [39] Chernoff C B,Carlson W D. Trace element zoning as a record of chemical disequilibrium during garnet growth[J]. Geology (Boulder), 1999, 27(6): 555−558.

    Google Scholar

    [40] Frank S S,Matthew J K. Trace element zoning in garnet as a monitor of crustal melting[J]. Geology, 1996, 24(12): 1099−1102. doi: 10.1130/0091-7613(1996)024<1099:TEZIGA>2.3.CO;2

    CrossRef Google Scholar

    [41] 陈能松,孙敏,杨勇,等. 变质石榴石的成分环带与变质过程[J]. 地学前缘, 2003, 10(3): 315−320.

    Google Scholar

    Chen N S,Sun M,Yang Y,et al. Major- and trace-element zoning in metamorphic garnets and their metamorphic process implications[J]. Earth Science Frontiers, 2003, 10(3): 315−320.

    Google Scholar

    [42] 王娟,张妍,宋传中,等. 石榴石钇(Y)元素电子探针分析及应用——以佛子岭石榴云母片岩为例[J]. 岩石学报, 2022, 38(3): 619−638. doi: 10.18654/1000-0569/2022.03.03

    CrossRef Google Scholar

    Wang J,Zhang Y,Song C Z,et al. Analysis and application of yttrium element in garnet by electron micro-probe analyzer:A case study of garnet-mica schist from Foziling Group[J]. Acta Petrologica Sinica, 2022, 38(3): 619−638. doi: 10.18654/1000-0569/2022.03.03

    CrossRef Google Scholar

    [43] Lanzirotti A. Yttrium zoning in metamorphic garnets[J]. Geochimica et Cosmochimica Acta, 1995, 59(19): 4105−4110. doi: 10.1016/0016-7037(95)00320-Y

    CrossRef Google Scholar

    [44] Frost B R,Tracy R J. P-T paths from zoned garnets; some minimum criteria[J]. American Journal of Science, 1991, 291(10): 917−939. doi: 10.2475/ajs.291.10.917

    CrossRef Google Scholar

    [45] 陈丹玲,孙勇,刘良,等. 柴北缘鱼卡河榴辉岩的变质演化——石榴石成分环带及矿物反应结构的证据[J]. 岩石学报, 2005, 21(4): 1039−1048. doi: 10.3321/j.issn:1000-0569.2005.04.002

    CrossRef Google Scholar

    Chen D L,Sun Y,Liu L,et al. Metamorphic evolution of the Yuka eclogite in the North Qaidam,NW China:Evidences from the compositional zonation of garnet and reaction texture in the rock[J]. Acta Petrologica Sinica, 2005, 21(4): 1039−1048. doi: 10.3321/j.issn:1000-0569.2005.04.002

    CrossRef Google Scholar

    [46] 陈鑫,郑有业,许荣科,等. 柴北缘超高压变质带折返过程对金红石成矿的制约:来自鱼卡和铁石观西地区石榴石成分环带的证据[J]. 地球科学与环境学报, 2016, 38(2): 143−159.

    Google Scholar

    Chen X,Zheng Y Y,Xu R K,et al. Exhumation processes of UHP matamorphic belt in the Northern Qaidam and their constrains to rutile mineralization:Evidences from compositional zoning of garnets in Yuqia and West Tieshiguan area[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 143−159.

    Google Scholar

    [47] 陈意,苏斌,郭顺. 大别—苏鲁造山带橄榄岩:进展和问题[J]. 中国科学:地球科学, 2015, 58(9): 1679−1699.

    Google Scholar

    Chen Y,Su B,Guo S. The Dabie—Sulu orogenic peridotites:Progress and key issues[J]. Science China:Earth Sciences, 2015, 58(9): 1679−1699.

    Google Scholar

    [48] 刘丛强,解广轰,增田彰正,等. 压力对稀土元素分配系数相对变化的影响——以宽甸、汉诺坝玄武岩中巨晶矿物为例[J]. 地球化学, 1992(1): 19−33. doi: 10.19700/j.0379-1726.1992.01.003

    CrossRef Google Scholar

    Liu C Q,Xie G H,Masuda A,et al. Effect of pressure on the peak position in the REE partition pattern:Evidence from megacryst minerals in Kuandian and Hannuoba basalts[J]. Geochimica, 1992(1): 19−33. doi: 10.19700/j.0379-1726.1992.01.003

    CrossRef Google Scholar

    [49] Han C M,Xiao W J,Su B X,et al. Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in Eastern Liaoning Province:Constraints from geochemistry and SHRIMP zircon U-Pb dating[J]. Precambrian Research, 2014, 254: 306−322. doi: 10.1016/j.precamres.2014.09.007

    CrossRef Google Scholar

    [50] Li L X,Li H M,Liu M J,et al. Timing of deposition and tectonothermal events of banded iron formations in the Anshan—Benxi area, Liaoning Province, China:Evidence from SHRIMP U-Pb zircon geochronology of the wall rocks[J]. Journal of Asian Earth Sciences, 2016, 129: 276−293. doi: 10.1016/j.jseaes.2016.08.022

    CrossRef Google Scholar

    [51] Li L X,Zi J W,Li H M,et al. High–grade magnetite mineralization at 1.86Ga in Neoarchean banded iron formations,Gongchangling,China:In situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite[J]. Economic Geology, 2019, 114(6): 1159−1175. doi: 10.5382/econgeo.4678

    CrossRef Google Scholar

    [52] Wan Y S,Dong C Y,Liu D Y,et al. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton:A review[J]. Precambrian Research, 2012, 222-223: 265−289. doi: 10.1016/j.precamres.2011.05.001

    CrossRef Google Scholar

    [53] Hu G Y,Li Y H,Fan C F,et al. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province,Northeastern China[J]. Ore Geology Reviews, 2015, 65(4): 1127−1141.

    Google Scholar

    [54] Liu J,Zhang J,Liu Z H,et al. Late Paleoproterozoic crustal thickening of the Jiao—Liao—Ji belt,North China Craton:Insights from ca.1.95-1.88Ga syn-collisional adakitic granites[J]. Precambrian Research, 2021, 355: 106120. doi: 10.1016/j.precamres.2021.106120

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(907) PDF downloads(116) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint