Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 4
Article Contents

PANG Jiang, ZHANG Yeyu, HUANG Yi, WANG Haibo, LIU Hu, WANG Daifu, FANG Jiyao. Effect of Fe Content on Raman Spectral Characteristics of Dolomite[J]. Rock and Mineral Analysis, 2023, 42(4): 852-862. doi: 10.15898/j.ykcs.202211030210
Citation: PANG Jiang, ZHANG Yeyu, HUANG Yi, WANG Haibo, LIU Hu, WANG Daifu, FANG Jiyao. Effect of Fe Content on Raman Spectral Characteristics of Dolomite[J]. Rock and Mineral Analysis, 2023, 42(4): 852-862. doi: 10.15898/j.ykcs.202211030210

Effect of Fe Content on Raman Spectral Characteristics of Dolomite

More Information
  • BACKGROUND

    Dolomite is a common carbonate mineral in sedimentary rocks, and dolomite rock serves as an important reservoir rock for oil and gas. However, the production of synthetic dolomite under normal temperature and pressure is not yet possible, the genesis of dolomite and dolomite reservoirs has been a difficult problem to understand in geological research. Fe ion is a prevalent impurity element in natural dolomite, and the Fe content in dolomite can serve as an indicator of the diagenetic environment, which provides valuable insights into the genesis of dolomite. The technology of Raman spectroscopy has evolved from qualitative analysis to quantitative analysis. Therefore, the quantitative characterization of carbonate mineral chemical composition can be accomplished using Raman spectroscopy. Previous studies have shown that the Raman spectra of calcite group minerals shift regularly with the change of cation composition. However, there is no systematic study on the relationship between Fe content and Raman spectrum in dolomite.

    OBJECTIVES

    To discuss the influence of Fe content on the Raman spectrum of dolomite, and establish a test method for the determination of Fe content in dolomite by Raman spectroscopy.

    METHODS

    Seven dolomite samples from the Maokou Formation were collected from a well in the Sichuan Basin. Based on the petrography observation under a microscope, different types of dolomite with relatively clean grains were selected for EPMA to obtain the chemical composition of dolomite, then microscopic confocal laser Raman spectroscopy was conducted in the same area to acquire the corresponding dolomite Raman spectra. In addition, Raman spectra and corresponding chemical composition data of 14 typical dolomite samples were obtained from the RRUFF database for this study. The effect of Fe content on Raman spectroscopy of dolomite was studied by analyzing the correlation between the characteristic parameters of dolomite Raman spectroscopy and Fe content.

    RESULTS

    (1) Raman peaks for two lattice vibration (T and L) and three [CO3]2− group internal vibration (v1, v3 and v4) were observed in the dolomite Raman spectrum. Compared with dolomite, each Raman peak position of ankerite moves to a lower frequency. Moreover, the Raman shifts of T and L peaks of ankerite are reduced by 5cm−1 and 13cm−1 on average, and the Raman shifts of v1, v3 and v4 peaks are reduced by 3cm−1, 2cm−1 and 2cm−1 on average, respectively.  (2) There is an obvious linear relationship between the Raman shift and their Fe content of dolomite minerals. The measured Raman shift decreases with the increase of Fe content in dolomite. Notably, the movement of the peak position of the lattice vibration mode is more obvious, with the change of Fe content in dolomite, compared with the internal vibration peak.  (3) Because the ionic radius of Fe2+ is larger than that of Mg2+, when Fe2+ replaced Mg2+ in the dolomite lattice, the average length of the metal-oxygen bond in minerals becomes longer, and the bond energy becomes weaker. Thus, with the changing of the Raman active vibration mode, Raman shifts of each peak in the dolomite Raman spectrum decreases.

    CONCLUSIONS

    Based on the different influences of Fe content in dolomite on the Raman shift of lattice vibration peaks and internal vibration peaks in Raman spectroscopy, a testing method for determining Fe content in dolomite is preliminarily established based on the distance between L peak and v1 peak in Raman spectroscopy. Compared with traditional methods for testing the Fe content in dolomite, this method has lower requirements for samples and can be used for non-destructive testing, and is suitable for artificial synthesis experiments of dolomite.

  • 加载中
  • [1] 马锋,杨柳明,顾家裕,等. 世界白石岩油气田勘探综述[J]. 沉积学报, 2011, 29(5): 1010−1021.

    Google Scholar

    Ma F,Yang L M,Gu J Y,et al. The summary on exploration of the dolomite oilfields in the world[J]. Acta Sedimentologica Sinica, 2011, 29(5): 1010−1021.

    Google Scholar

    [2] 苏中堂,佘伟,廖慧鸿,等. 白云岩储层成因研究进展及发展趋势[J]. 天然气地球科学, 2022, 33(7): 1175−1188.

    Google Scholar

    Su Z T,She W,Liao H H,et al. Research progress and development trend of the genesis of dolomite reservoirs[J]. Natural Gas Geoscience, 2022, 33(7): 1175−1188.

    Google Scholar

    [3] 赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:地球科学, 2014, 44(9): 1952−1939.

    Google Scholar

    Zhao W Z,Shen A J,Zheng J F,et al. The porosity origin of dolostone reservoirs in the Tarim,Sichuan and Ordos Basins and its implication to reservoir prediction[J]. Science China:Earth Sciences, 2014, 44(9): 1952−1939.

    Google Scholar

    [4] 杜金虎,邹才能,徐春春,等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268−277.

    Google Scholar

    Du J H,Zou C N,Xu C C,et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of Central Sichuan paleo-uplift,Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268−277.

    Google Scholar

    [5] 乐宏,赵路子,杨雨,等. 四川盆地寒武系沧浪铺组油气勘探重大发现及其启示[J]. 天然气工业, 2020, 40(11): 11−19. doi: 10.3787/j.issn.1000-0976.2020.11.002

    CrossRef Google Scholar

    Yue H,Zhao L Z,Yang Y,et al. Great discovery of oil and gas exploration in Cambrian Canglangpu Formation of the Sichuan Basin and its implications[J]. Natural Gas Industry, 2020, 40(11): 11−19. doi: 10.3787/j.issn.1000-0976.2020.11.002

    CrossRef Google Scholar

    [6] 杨雨,谢继容,赵路子,等. 四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示——以川中北部地区JT1井天然气立体勘探为例[J]. 天然气工业, 2021, 41(2): 1−9.

    Google Scholar

    Yang Y,Xie J R,Zhao L Z,et al. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment:A case study of the tridimensional exploration of Well JT1 in the Central-Northern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2): 1−9.

    Google Scholar

    [7] 肖冰清,曹淑娟,邬光辉. 塔西南地区海相碳酸盐岩勘探突破新领域:寒武系白云岩[J]. 海相油气地质, 2017, 22(2): 17−24. doi: 10.3969/j.issn.1672-9854.2017.02.003

    CrossRef Google Scholar

    Xiao B Q,Cao S J,Wu G H,et al. New realm of marine carbonate exploration in Southwestern Tarim Basin:Cambrian dolomite[J]. Marine Origin Petroleum Geology, 2017, 22(2): 17−24. doi: 10.3969/j.issn.1672-9854.2017.02.003

    CrossRef Google Scholar

    [8] 谢会文,能源,敬兵,等. 塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J]. 中国石油勘探, 2017, 22(3): 1−11.

    Google Scholar

    Xie H W,Neng Y,Jing B,et al. New discovery in exploration of Cambrian—Ordovician dolomite buried hills in Tarim Basin and its significance[J]. China Petroleum Exploration, 2017, 22(3): 1−11.

    Google Scholar

    [9] 何海清,郭绪杰,赵振宇,等. 鄂尔多斯盆地奥陶系盐下马四段天然气成藏新认识及勘探重大突破[J]. 石油勘探与开发, 2022, 49(3): 429−439.

    Google Scholar

    He H Q,Guo X J,Zhao Z Y,et al. New understandings on gas accumulation and major exploration breakthroughs in subsalt Ma4 Member of Ordovician Majiagou Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development, 2022, 49(3): 429−439.

    Google Scholar

    [10] Burns S J,Mckenzie J A,Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2010, 47(S1): 49−61.

    Google Scholar

    [11] 李红,柳益群. “白云石(岩)问题”与湖相白云岩研究[J]. 沉积学报, 2013, 31(2): 302−314.

    Google Scholar

    Li H,Liu Y Q. “Dolomite Problem” and research of ancient lacustrine dolostones[J]. Acta Sedimentologica Sinica, 2013, 31(2): 302−314.

    Google Scholar

    [12] 张亦凡,马怡飞,姚奇志,等. “白云石问题”及其实验研究[J]. 高校地质学报, 2015, 21(3): 395−406.

    Google Scholar

    Zhang Y F,Ma Y F,Yao Q Z,et al. “Dolomite Problem” and experimental studies of dolomite formation[J]. Geological Journal of China Universities, 2015, 21(3): 395−406.

    Google Scholar

    [13] 何治亮,马永生,张军涛,等. 中国的白云岩与白云岩储层:分布,成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1−14.

    Google Scholar

    He Z L,Ma Y S,Zhang J T,et al. Distribution,genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil and Gas Geology, 2020, 41(1): 1−14.

    Google Scholar

    [14] 张军涛,何治亮,岳小娟,等. 鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因[J]. 石油与天然气地质, 2017, 38(4): 776−783. doi: 10.11743/ogg20170414

    CrossRef Google Scholar

    Zhang J T,He Z L,Yue X J,et al. Genesis of iron-rich dolostones in the 5th member of the Majiagou Formation of the Ordovician in Ordos Basin[J]. Oil and Gas Geology, 2017, 38(4): 776−783. doi: 10.11743/ogg20170414

    CrossRef Google Scholar

    [15] Hendry J P,Wilkinson M,Fallick A E,et al. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the Central North Sea[J]. Journal of Sedimentary Research, 2000, 70(1): 227−239. doi: 10.1306/2DC4090D-0E47-11D7-8643000102C1865D

    CrossRef Google Scholar

    [16] 沈江远,闫琢玉,付和平,等. 西永2井中新统铁白云岩空间变异特征及成因[J]. 海洋地质前沿, 2021, 37(6): 39−48.

    Google Scholar

    Sheng J Y,Yan Z Y,Fu H P,et al. Spatial variation and genesis of Miocene ankerite in Well Xiyong 2[J]. Marine Geology Frontiers, 2021, 37(6): 39−48.

    Google Scholar

    [17] Xi K,Cao Y,Zhu R,et al. Evidences of localized CO2-induced diagenesis in the Cretaceous Quantou Formation,Southern Songliao Basin,China[J]. International Journal of Greenhouse Gas Control, 2016, 52: 155−174. doi: 10.1016/j.ijggc.2016.07.010

    CrossRef Google Scholar

    [18] 庞江,罗静兰,马永坤,等. 白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系[J]. 地质学报, 2019, 93(3): 724−737.

    Google Scholar

    Pang J,Luo J L,Ma Y K,et al. Forming mechanism of ankerite in Tertiary reservoir of the Baiyun Sag,Pearl River Mouth Basin,and its relationship to CO2-bearing fluid activity[J]. Acta Geologica Sinica, 2019, 93(3): 724−737.

    Google Scholar

    [19] 柳益群,李红,朱玉双,等. 白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩[J]. 沉积学报, 2010, 28(5): 861−867.

    Google Scholar

    Liu Y Q,Li H,Zhu Y S,et al. Permian lacustrine eruptive hydrothermal dolomite,Santanghu Basin,Xinjiang Province[J]. Acta Sedimentologica Sinica, 2010, 28(5): 861−867.

    Google Scholar

    [20] 由雪莲,贾文强,徐帆,等. 铁白云石矿物学特征及原生次生成因机制[J]. 地球科学, 2018, 43(11): 4046−4055.

    Google Scholar

    You X L,Jia W Q,Xu F,et al. Mineralogical characteristics of ankerite and mechanisms of primary and secondary origins[J]. Earth Science, 2018, 43(11): 4046−4055.

    Google Scholar

    [21] Guedes A,Valentim B,Prieto A C,et al. Micro-Raman spectroscopy of collotelinite,fusinite and macrinite[J]. International Journal of Coal Geology, 2010, 83(4): 415−422. doi: 10.1016/j.coal.2010.06.002

    CrossRef Google Scholar

    [22] 宁珮莹,张天阳,马泓,等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640−648.

    Google Scholar

    Ning P Y,Zhang T Y,Ma H,et al. Characterization of hydrous mineral inclusions in ruby and sapphire by infrared spectroscopy and microscopic confocal laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640−648.

    Google Scholar

    [23] 何佳乐,龚婷婷,潘忠习,等. 细微矿物拉曼成像分析技术与方法研究[J]. 岩矿测试, 2021, 40(4): 491−503.

    Google Scholar

    He J L,Gong T T,Pan Z X,et al. Raman imaging analysis method of fine minerals in rock ore[J]. Rock and Mineral Analysis, 2021, 40(4): 491−503.

    Google Scholar

    [24] 薛金涛,李春燕,吴纯洁,等. 拉曼光谱在多组分定量分析中方法学验证的探讨[J]. 光谱学与光谱分析, 2017, 37(1): 120−123.

    Google Scholar

    Xue J T,Li C Y,Wu C J,et al. The study of methodogy validation in multi component quantitative analysis of Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 120−123.

    Google Scholar

    [25] 马瑛,王琦,丘志力,等. 湖南砂矿金刚石中石墨包裹体拉曼光谱原位测定:形成条件及成因指示[J]. 光谱学与光谱分析, 2018, 38(6): 99−103.

    Google Scholar

    Ma Y,Wang Q,Qiu Z L,et al. In-situ Raman spectroscopy determination testing and genesis of graphite inclusions in alluvial diamonds from Hunan[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 99−103.

    Google Scholar

    [26] Edwards H,Villar S,Jehlicka J,et al. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals[J]. Spectrochimica Part A:Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2273−2280. doi: 10.1016/j.saa.2005.02.026

    CrossRef Google Scholar

    [27] 杜广鹏,范建良. 方解石族矿物的拉曼光谱特征[J]. 矿物岩石, 2010, 30(4): 32−35. doi: 10.3969/j.issn.1001-6872.2010.04.007

    CrossRef Google Scholar

    Du G P,Fan J L. Characteristics of Raman spectral of calcite group minerals[J]. Journal of Mineralogy and Petrology, 2010, 30(4): 32−35. doi: 10.3969/j.issn.1001-6872.2010.04.007

    CrossRef Google Scholar

    [28] White W B. The carbonate minerals[M]//Farmer V C. The infra-red spectra of the minerals. London: Mineralogical Society, 1974: 227-284.

    Google Scholar

    [29] Bischoff W D,Mackenzie F T,Sharma S K. Carbonate disorder in synthetic and biogenic magnesian calcites:A Raman spectral study[J]. American Mineralogist, 1985, 70: 581−589.

    Google Scholar

    [30] 朱莹,黎晏彰,鲁安怀,等. 方解石、白云石、菱镁矿的中远红外光谱学特征研究[J]. 地学前缘, 2022, 29(1): 459−469.

    Google Scholar

    Zhu Y,Li Y Z,Lu A H,et al. Middle and far infrared spectroscopic analysis of calcite,dolomite and magnesite[J]. Earth Science Frontiers, 2022, 29(1): 459−469.

    Google Scholar

    [31] Wang D B,Hamm L M,Bodnar R J,et al. Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates[J]. Journal of Raman Spectroscopy, 2012, 43: 543−548. doi: 10.1002/jrs.3057

    CrossRef Google Scholar

    [32] 付宛璐,袁学银. 镁对方解石相变压力和拉曼光谱影响的实验研究[J]. 光谱学与光谱分析, 2019, 39(7): 2053−2058.

    Google Scholar

    Fu W L,Yuan X Y. Study on the influence of magnesium on the phase transition pressures and Raman vibrations of calcite[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2053−2058.

    Google Scholar

    [33] 王祥. 方解石族和文石族碳酸盐高温振动光谱学研究——对碳同位素平衡分馏热力学模型的启示[D]. 武汉: 中国地质大学(武汉), 2020: 1−9.

    Google Scholar

    Wang X. High-temperature vibrational spectroscopy of calcite group and aragonite group carbonates: Implications for the thermo-equilibrium carbon isotope fractionation[D]. Wuhan: China University of Geosciences (Wuhan), 2020: 1−9.

    Google Scholar

    [34] Gligor J,Viktor S,Soptrajanov B,et al. Minerals from macedonia. Ⅳ. Discrimination between some carbonate minerals by FTIR spectroscopy[J]. Neues Jahrbuch für Mineralogie- Abhandlungen, 2002, 177(3): 241−253.

    Google Scholar

    [35] 赵俊哲,吕新彪. 高压下白云石的原位拉曼光谱研究[J]. 岩矿测试, 2008, 27(5): 337−340. doi: 10.3969/j.issn.0254-5357.2008.05.005

    CrossRef Google Scholar

    Zhao J Z,Lyu X B. Study on in-situ Raman spectra of dolomite under high pressure[J]. Rock and Mineral Analysis, 2008, 27(5): 337−340. doi: 10.3969/j.issn.0254-5357.2008.05.005

    CrossRef Google Scholar

    [36] Herman R G, Bogdan C E, Sommer A J. Laser Raman microprobe study of the identification and thermal transformations of some carbonate and aluminosilicate minerals[M]//Advances in materials characterization Ⅱ. Springer US, 1987: 113−130.

    Google Scholar

    [37] 潘兆橹. 结晶学及矿物学(下册)[M]. 北京: 地质出版社, 1998: 254−256.

    Google Scholar

    Yao Z L. Crystallography and mineralogy (Part Ⅱ)[M]. Beijing: Geological Publishing House, 1998: 254−256.

    Google Scholar

    [38] Chai L,Navrotsky A. Synthesis,characterization,and energetics of solid solution along the dolomite-ankerite join,and implications for the stability of ordered CaFe(CO3)2[J]. American Mineralogist, 1996, 81(9-10): 1141−1147. doi: 10.2138/am-1996-9-1012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1972) PDF downloads(181) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint