Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 1
Article Contents

GUO Rong, SHEN Yating. A Review on the Impacts of Microplastics and Environmental Pollutants on Soil Microorganisms[J]. Rock and Mineral Analysis, 2024, 43(1): 1-15. doi: 10.15898/j.ykcs.202209180175
Citation: GUO Rong, SHEN Yating. A Review on the Impacts of Microplastics and Environmental Pollutants on Soil Microorganisms[J]. Rock and Mineral Analysis, 2024, 43(1): 1-15. doi: 10.15898/j.ykcs.202209180175

A Review on the Impacts of Microplastics and Environmental Pollutants on Soil Microorganisms

More Information
  • The extensive use of plastic results in a significant release of microplastics into the soil, posing risks to ecosystems and human health. Research on the interaction between microplastics and pollutants and their combined effects is sparse. Understanding how soil microplastics affect microbial communities is crucial for assessing ecological risks. This comprehensive review examines the adsorption and migration mechanisms of microplastics, with a specific focus on their impact on migration. It explores the combined effects of microplastics with organic pollutants and heavy metals, leading to changes in toxicity, bioavailability, and mobility. Additionally, the review investigates how microplastics influence soil microbial communities, revealing alterations in species richness, activity, and structure. The findings of this review highlight the significant impact of microplastics on pollutants, the modifications in toxicity, bioavailability, and mobility of combined pollutants, as well as their influence on soil microbial communities. To comprehensively assess the environmental impact, it is essential to understand how microplastics interact with pollutants. The review underscores the need to comprehend their influence on soil microbes and functions in order to effectively address ecological risks. Future research should prioritize exploring microscale mechanisms and developing strategies to mitigate soil microplastics and associated pollution. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202209180175.

  • 加载中
  • [1] Law K L, Thompson R C. Microplastics in the seas[J]. Science, 2018, 345(6193): 144−145.

    Google Scholar

    [2] 高文杰, 卫新来, 吴克. 环境中微塑料的研究进展[J]. 塑料科技, 2021, 49(2): 111−116.

    Google Scholar

    Gao W J, Wei X L, Wu K. Research progress of microplastics in the environment[J]. Plastics Science and Technology, 2021, 49(2): 111−116.

    Google Scholar

    [3] 王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 2019, 14(4): 23−30.

    Google Scholar

    Wang Y F, Li M, Yu H Y, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 23−30.

    Google Scholar

    [4] Moller J N, Loder M G J, Laforsch C. Finding microplastics in soils: A review of analytical methods[J]. Environmental Science & Technology, 2020, 54(4): 2078−2090.

    Google Scholar

    [5] Bergmann M, Wirzberger V, Krumpen T, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN Observatory[J]. Environmental Science & Technology, 2017, 51(19): 11000−11010.

    Google Scholar

    [6] Wright S L, Ulke J, Font A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport[J]. Environment International, 2020, 136: 105411. doi: 10.1016/j.envint.2019.105411

    CrossRef Google Scholar

    [7] Zylstra E R. Accumulation of wind-dispersed trash in desert environments[J]. Journal of Arid Environments, 2013, 89: 13−15. doi: 10.1016/j.jaridenv.2012.10.004

    CrossRef Google Scholar

    [8] Obbard R W, Sadri S, Wong Y Q, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice[J]. Earth’s Future, 2014, 2(6): 315−320. doi: 10.1002/2014EF000240

    CrossRef Google Scholar

    [9] Evangeliou N, Grythe H, Klimont Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communication, 2020, 11(1): 3381. doi: 10.1038/s41467-020-17201-9

    CrossRef Google Scholar

    [10] Ren X, Tang J, Liu X, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil[J]. Environmental Pollution, 2020, 256: 113347. doi: 10.1016/j.envpol.2019.113347

    CrossRef Google Scholar

    [11] Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163: 107199. doi: 10.1016/j.envint.2022.107199

    CrossRef Google Scholar

    [12] Zhang N, Li Y B, He H R, et al. You are what you eat: Microplastics in the feces of young men living in Beijing[J]. Science of the Total Environment, 2021, 767: 144345. doi: 10.1016/j.scitotenv.2020.144345

    CrossRef Google Scholar

    [13] 曹腾瑞, 屈艾彬, 郭会彩, 等. 微塑料毒性的研究进展[J]. 河北医科大学学报, 2021, 42(1): 107−111. doi: 10.3969/j.issn.1007-3205.2021.01.023

    CrossRef Google Scholar

    Cao T R, Qu A B, Guo H C, et al. Research progress on the toxicity of microplastics[J]. Journal of Hebei Medical University, 2021, 42(1): 107−111. doi: 10.3969/j.issn.1007-3205.2021.01.023

    CrossRef Google Scholar

    [14] Gupta S, Kumar R, Rajput A, et al. Atmospheric microplastics: Perspectives on origin, abundances, ecological and health risks[J]. Environmental Science and Pollution Research, 2023, 30(49): 107435−107464. doi: 10.1007/s11356-023-28422-y

    CrossRef Google Scholar

    [15] Cao Y, Vlacil A K, Bänfer S, et al. Polystyrene microplastic particles induce endothelial activation[J]. PLoS ONE, 2021, 16(11): e0260181. doi: 10.1371/journal.pone.0260181

    CrossRef Google Scholar

    [16] 刘沙沙, 付建平, 郭楚玲, 等. 微塑料的环境行为及其生态毒性研究进展[J]. 农业环境科学学报, 2019, 38(5): 957−969.

    Google Scholar

    Liu S S, Fu J P, Guo C L, et al. Research progress on environmental behavior and ecological toxicity of microplastics[J]. Journal of Agro-Environment Science, 2019, 38(5): 957−969.

    Google Scholar

    [17] Leitao I A, van Schaik L, Ferreira A J D, et al. The spatial distribution of microplastics in topsoils of an urban environment—Coimbra City case-study[J]. Environmental Research, 2023, 218: 114961. doi: 10.1016/j.envres.2022.114961

    CrossRef Google Scholar

    [18] Tran T K A, Raju S, Singh A, et al. Occurrence and distribution of microplastics in long-term biosolid-applied rehabilitation land: An overlooked pathway for microplastic entry into terrestrial ecosystems in Australia[J]. Environmental Pollution, 2023, 336: 122464. doi: 10.1016/j.envpol.2023.122464

    CrossRef Google Scholar

    [19] Beriot N, Zornoza R, Lwanga E H, et al. Intensive vegetable production under plastic mulch: A field study on soil plastic and pesticide residues and their effects on the soil microbiome[J]. Science of the Total Environment, 2023, 900: 165179. doi: 10.1016/j.scitotenv.2023.165179

    CrossRef Google Scholar

    [20] Selonen S, Jemec K A, Benguedouar H, et al. Modulation of chlorpyrifos toxicity to soil arthropods by simultaneous exposure to polyester microfibers or tire particle microplastics[J]. Applied Soil Ecology, 2023, 181: 104657. doi: 10.1016/j.apsoil.2022.104657

    CrossRef Google Scholar

    [21] Liu Y, Cui W, Li W, et al. Effects of microplastics on cadmium accumulation by rice and arbuscular mycorrhizal fungal communities in cadmium-contaminated soil[J]. Journal of Hazardous Materials, 2023, 442: 130102. doi: 10.1016/j.jhazmat.2022.130102

    CrossRef Google Scholar

    [22] Zhou Y, Sun F, Wu X, et al. Formation and nature of non-extractable residues of emerging organic contaminants in humic acids catalyzed by laccase[J]. Science of the Total Environment, 2022, 829: 154300. doi: 10.1016/j.scitotenv.2022.154300

    CrossRef Google Scholar

    [23] 胡桂林. 微塑料与土壤介质相互作用机制的研究[D]. 淮南: 安徽理工大学, 2019: 1-49.

    Google Scholar

    Hu G L. Interaction mechanism between microplastics and soil media[D]. Huainan: Anhui University of Science and Technology, 2019: 1-49.

    Google Scholar

    [24] Larue C, Sarret G, Castillo-Michel H, et al. A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms[J]. Small, 2021, 17(20): 2005834. doi: 10.1002/smll.202005834

    CrossRef Google Scholar

    [25] 吴小伟, 黄何欣悦, 石妍琦, 等. 水环境中微塑料的光老化过程及影响因素研究进展[J]. 科学通报, 2021, 66(36): 4619−4632. doi: 10.1360/TB-2021-0376

    CrossRef Google Scholar

    Wu X W, Huang-He X Y, Shi Y Q, et al. Progress on the photo aging mechanism of microplastics and related impact factors in water environment[J]. Chinese Science Bulletin, 2021, 66(36): 4619−4632. doi: 10.1360/TB-2021-0376

    CrossRef Google Scholar

    [26] 胡婷婷, 陈家玮. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩 矿 测 试, 2022, 41(3): 353−363.

    Google Scholar

    Hu T T, Chen J W. A review on adsorption and transport of microplastics in soil and the effect of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353−363.

    Google Scholar

    [27] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in Southwestern China[J]. Science of the Total Environment, 2018, 642: 12−20. doi: 10.1016/j.scitotenv.2018.06.004

    CrossRef Google Scholar

    [28] Zhang S, Liu X, Hao X, et al. Distribution of low-density microplastics in the mollisol farmlands of Northeast China[J]. Science of the Total Environment, 2020, 708: 135091. doi: 10.1016/j.scitotenv.2019.135091

    CrossRef Google Scholar

    [29] 张飞祥. 聚酯微纤维对土壤物理性质的影响[D]. 昆明: 云南大学, 2019: 1-36.

    Google Scholar

    Zhang F X. Effect of polyester microfibers on soil physical properties[D]. Kunming: Yunnan University, 2019: 1-36.

    Google Scholar

    [30] O’connor D, Pan S, Shen Z, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527−534. doi: 10.1016/j.envpol.2019.03.092

    CrossRef Google Scholar

    [31] Blasing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422−435. doi: 10.1016/j.scitotenv.2017.08.086

    CrossRef Google Scholar

    [32] Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7: 1362. doi: 10.1038/s41598-017-01594-7

    CrossRef Google Scholar

    [33] Maass S, Daphi D, Lehmann A, et al. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017, 225: 456−459. doi: 10.1016/j.envpol.2017.03.009

    CrossRef Google Scholar

    [34] 吕一涵, 周杰, 杨亚东, 等. 微塑料对农田生态系统的影响: 研究现状与展望[J]. 中国生态农业学报(中英文), 2021, 30(1): 1−14.

    Google Scholar

    Lyu Y H, Zhou J, Yang Y D, et al. Microplastics in agroecosystem: Research status and future challenges[J]. Chinese Journal of Eco-Agriculture, 2021, 30(1): 1−14.

    Google Scholar

    [35] Lu J, Wu J, Wu J, et al. Adsorption and desorption of steroid hormones by microplastics in seawater[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 730−735. doi: 10.1007/s00128-020-02784-2

    CrossRef Google Scholar

    [36] 姬庆松, 孔祥程, 王信凯, 等. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展[J]. 环境化学, 2022, 41(1): 70−82. doi: 10.7524/j.issn.0254-6108.2020090303

    CrossRef Google Scholar

    Ji Q S, Kong X C, Wang X K, et al. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: A review[J]. Environmental Chemistry, 2022, 41(1): 70−82. doi: 10.7524/j.issn.0254-6108.2020090303

    CrossRef Google Scholar

    [37] Wang T, Wang L, Chen Q, et al. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport[J]. Science of the Total Environment, 2020, 748: 142427. doi: 10.1016/j.scitotenv.2020.142427

    CrossRef Google Scholar

    [38] Zhang X, Zhao J, Gan T, et al. Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to Zebrafish offspring[J]. Journal of Hazardous Materials, 2022, 437: 129409. doi: 10.1016/j.jhazmat.2022.129409

    CrossRef Google Scholar

    [39] Sunta U, Prosenc F, Trebse P, et al. Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil[J]. Chemosphere, 2020, 261: 127762. doi: 10.1016/j.chemosphere.2020.127762

    CrossRef Google Scholar

    [40] Liu X, Xu J, Zhao Y, et al. Hydrophobic sorption behaviors of 17β-estradiol on environmental microplastics[J]. Chemosphere, 2019, 226: 726−735. doi: 10.1016/j.chemosphere.2019.03.162

    CrossRef Google Scholar

    [41] Huffer T, Hofmann T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214: 194−201. doi: 10.1016/j.envpol.2016.04.018

    CrossRef Google Scholar

    [42] 钟名誉, 陈卓, 贾晓洋, 等. 焦化污染土壤有机质不同组分中多环芳烃分布及其生物有效性分析[J]. 环境科学学报, 2021, 41(8): 3349−3358.

    Google Scholar

    Zhong M Y, Chen Z, Jia X Y, et al. The analysis in distribution and bioavailability of polycyclic aromatic hydrocarbons in organic matter components of coking contaminated soil[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3349−3358.

    Google Scholar

    [43] 徐鹏程, 郭健, 马东, 等. 新制和老化微塑料对多溴联苯醚的吸附[J]. 环境科学, 2020, 41(3): 1329−1337.

    Google Scholar

    Xu P C, Guo J, Ma D, et al. Sorption of polybrominated diphenyl ethers by virgin and aged microplastics[J]. Environmental Science, 2020, 41(3): 1329−1337.

    Google Scholar

    [44] 迟杰, 邢海文, 张海彤, 等. 不同粒径生物炭和微塑料共存对菲吸附的影响[J]. 农业环境科学学报, 2021, 41(3): 616−621.

    Google Scholar

    Chi J, Xing H W, Zhang H T, et al. Effects of the coexistence of biochar and microplastic in different particle sizes on phenanthrene sorption[J]. Journal of Agro-Environment Science, 2021, 41(3): 616−621.

    Google Scholar

    [45] 许佰乐. 土水环境中微塑料对有机污染物的吸附行为及机理[D]. 杭州: 浙江大学, 2020: 1-110.

    Google Scholar

    Xu B L. Sorption of organic contaminants by microplastic in water and soil: Behavior and mechanisms[D]. Hangzhou: Zhejiang University, 2020: 1-110.

    Google Scholar

    [46] Zhang H, Wang J, Zhou B, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors[J]. Environmental Pollution, 2018, 243: 1550−1557. doi: 10.1016/j.envpol.2018.09.122

    CrossRef Google Scholar

    [47] 黄皖唐. 四溴双酚A在PE微塑料影响下的人体暴露风险及其生物降解机理研究[D]. 广州: 华南理工大学, 2020: 1-86.

    Google Scholar

    Huang W T. Study on human exposure risks of tetrabromobisphenol a under the influence of polyethylene microplastics and its biodegradation mechanism[D]. Guangzhou: South China University of Technology, 2020: 1-86.

    Google Scholar

    [48] Zhang M, Zhao Y, Qin X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil[J]. Science of the Total Environment, 2019, 688: 470−478. doi: 10.1016/j.scitotenv.2019.06.108

    CrossRef Google Scholar

    [49] 柴炳文, 尹华, 魏强, 等. 电子废物拆解区微塑料与周围土壤环境之间的关系[J]. 环境科学, 2021, 42(3): 1073−1080.

    Google Scholar

    Chai B W, Yin H, Wei Q, et al. Relationships between microplastic and surrounding soil in an E-waste zone of China[J]. Environmental Science, 2021, 42(3): 1073−1080.

    Google Scholar

    [50] Ren X, Tang J, Wang L, et al. Combined effects of microplastics and biochar on the removal of polycyclic aromatic hydrocarbons and phthalate esters and its potential microbial ecological mechanism[J]. Frontiers in Microbiology, 2021, 12: 647766. doi: 10.3389/fmicb.2021.647766

    CrossRef Google Scholar

    [51] 费禹凡. 酸性农田土壤微塑料污染的微生物生态效应[D]. 临安: 浙江农林大学, 2020: 1-62.

    Google Scholar

    Fei Y F. Microbial ecological effects of microplastic pollution in an acidic paddy soil[D]. Lin’an: Zhejiang A & F University, 2020: 1-62.

    Google Scholar

    [52] Wang J, Liu X, Dai Y, et al. Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil[J]. Science of the Total Environment, 2020, 741: 140463. doi: 10.1016/j.scitotenv.2020.140463

    CrossRef Google Scholar

    [53] Jia H, Wu D, Yu Y, et al. Impact of microplastics on bioaccumulation of heavy metals in rape (Brassica napus L. )[J]. Chemosphere, 2022, 288: 132576. doi: 10.1016/j.chemosphere.2021.132576

    CrossRef Google Scholar

    [54] Wang F, Wang X, Song N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L. ) by altering the soil microenvironment[J]. Science of the Total Environment, 2021, 784: 147133. doi: 10.1016/j.scitotenv.2021.147133

    CrossRef Google Scholar

    [55] Dong Y, Gao M, Qiu W, et al. Uptake of microplastics by carrots in presence of As(Ⅲ): Combined toxic effects[J]. Journal of Hazardous Materials, 2021, 411: 125055. doi: 10.1016/j.jhazmat.2021.125055

    CrossRef Google Scholar

    [56] Wang F, Zhang X, Zhang S, et al. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J]. Toxics, 2020, 8(2): 36. doi: 10.3390/toxics8020036

    CrossRef Google Scholar

    [57] 顾馨悦, 徐修媛, 咸泽禹, 等. 老化聚氯乙烯微塑料与镉对小麦的联合毒性[J]. 环境化学, 2021, 40(9): 2633−2639.

    Google Scholar

    Gu X Y, Xu X Y, Xian Z Y, et al. Joint toxicity of aged polyvinyl chloride microplastics and cadmium to the wheat plant[J]. Environmental Chemistry, 2021, 40(9): 2633−2639.

    Google Scholar

    [58] Dong Y, Gao M, Song Z, et al. Microplastic particles increase arsenic toxicity to rice seedlings[J]. Environmental Pollution, 2020, 259: 113892. doi: 10.1016/j.envpol.2019.113892

    CrossRef Google Scholar

    [59] Wang F, Zhang X, Zhang S, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791. doi: 10.1016/j.chemosphere.2020.126791

    CrossRef Google Scholar

    [60] Zeb A, Liu W, Meng L, et al. Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: A study involving physio-biochemical properties and metabolomic profiles[J]. Journal of Hazardous Materials, 2022, 424: 127405. doi: 10.1016/j.jhazmat.2021.127405

    CrossRef Google Scholar

    [61] Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189−195. doi: 10.1016/j.ecss.2015.12.003

    CrossRef Google Scholar

    [62] Godoy V, Blazquez G, Calero M, et al. The potential of microplastics as carriers of metals[J]. Environmental Pollution, 2019, 255(3): 113363.

    Google Scholar

    [63] Massos A, Turner A. Cadmium, lead and bromine in beached microplastics[J]. Environmental Pollution, 2017, 227: 139−145. doi: 10.1016/j.envpol.2017.04.034

    CrossRef Google Scholar

    [64] Turner A, Holmes L A. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 2015, 12(5): 600−610. doi: 10.1071/EN14143

    CrossRef Google Scholar

    [65] Rochman C M, Hentschel B T, Teh S J. Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments[J]. Plos ONE, 2014, 9(1): e85433. doi: 10.1371/journal.pone.0085433

    CrossRef Google Scholar

    [66] 李文华, 简敏菲, 刘淑丽, 等. 鄱阳湖湖口—长江段沉积物中微塑料与重金属污染物的赋存关系[J]. 环境科学, 2020, 41(1): 242−252.

    Google Scholar

    Li W H, Jian M F, Liu S L, et al. Occurrence relationship between microplastics and heavy metals pollutants in the estuarine sediments of Poyang Lake and the Yangtze River[J]. Environmental Science, 2020, 41(1): 242−252.

    Google Scholar

    [67] 宫婉婷, 李万海, 邹继颖, 等. 聚乙烯醇微塑料对溶液中 Cu2+的吸附[J]. 化学试剂, 2021, 43(11): 1561−1568.

    Google Scholar

    Gong W T, Li W H, Zou J Y, et al. Adsorption of Cu2+ in solution by polyvinyl alcohol microplastic[J]. Chemical Reagents, 2021, 43(11): 1561−1568.

    Google Scholar

    [68] Bandow N, Will V, Wachtendorf V, et al. Contaminant release from aged microplastic[J]. Environmental Chemistry, 2017, 14(6): 394−405. doi: 10.1071/EN17064

    CrossRef Google Scholar

    [69] Dong Y, Gao M, Song Z, et al. Adsorption mechanism of As(Ⅲ) on polytetrafluoroethylene particles of different size[J]. Environmental Pollution, 2019, 254: 112950. doi: 10.1016/j.envpol.2019.07.118

    CrossRef Google Scholar

    [70] 宋佃星, 马莉, 王全九. 宝鸡地区典型农田土壤中微塑料赋存特征及其环境效应研究[J]. 干旱区资源与环境, 2021, 35(2): 170−175.

    Google Scholar

    Song D X, Ma L, Wang Q J. Occurrence characteristics and environmental effects of microplastics in typical farmland soils in Baoji area[J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 170−175.

    Google Scholar

    [71] 高丰蕾, 李景喜, 孙承君, 等. 微塑料富集金属铅元素的能力与特征分析[J]. 分析测试学报, 2017, 36(8): 1018−1022.

    Google Scholar

    Gao F L, Li J X, Sun C J, et al. Analysis on ability and characteristics of microplastics to enrich metal lead[J]. Journal of Instrumental Analysis, 2017, 36(8): 1018−1022.

    Google Scholar

    [72] 韩宾. 微塑料对土壤中重金属吸附、解吸的影响[D]. 青岛: 青岛科技大学, 2020: 12-14.

    Google Scholar

    Han B. Effects of microplastics on adsorption and desorption of heavy metals in soil[D]. Qingdao: Qingdao University of Science & Technology, 2020: 12-14.

    Google Scholar

    [73] 范秀磊, 常卓恒, 邹晔锋, 等. 可降解微塑料对铜和锌离子的吸附解吸特性[J]. 中国环境科学, 2021, 41(5): 2141−2150.

    Google Scholar

    Fan X L, Chang Z H, Zou Y F, et al. Adsorption and desorption properties of degradable microplastic for Cu2+ and Zn2+[J]. China Environmental Science, 2021, 41(5): 2141−2150.

    Google Scholar

    [74] 周瑛, 徐博凡, 王萍亚, 等. 微塑料对水体中痕量砷、铅的吸附[J]. 浙江工业大学学报, 2019, 47(6): 648−653.

    Google Scholar

    Zhou Y, Xu B F, Wang P Y, et al. Study on the adsorption of trace arsenic and plumbum ion by microplastics[J]. Journal of Zhejiang University of Technology, 2019, 47(6): 648−653.

    Google Scholar

    [75] Dong Y, Gao M, Qiu W, et al. Adsorption of arsenite to polystyrene microplastics in the presence of humus[J]. Environmental Science Processes & Impacts, 2020, 22(12): 2388−2397.

    Google Scholar

    [76] Fahrenfeld N L, Arbuckle-Keil G, Naderi B N, et al. Source tracking microplastics in the freshwater environment[J]. Trends in Analytical Chemistry, 2019, 112: 248−254. doi: 10.1016/j.trac.2018.11.030

    CrossRef Google Scholar

    [77] Catrouillet C, Davranche M, Khatib I, et al. Metals in microplastics: Determining which are additive, adsorbed, and bioavailable[J]. Environmental Science Processes & Impacts, 2021, 23(4): 553−558.

    Google Scholar

    [78] Yi M, Zhou S, Zhang L, et al. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environment Research, 2021, 93(1): 24−32. doi: 10.1002/wer.1327

    CrossRef Google Scholar

    [79] Huang Y, Zhao Y, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254: 112983. doi: 10.1016/j.envpol.2019.112983

    CrossRef Google Scholar

    [80] Ng E L, Lin S Y, Dungan A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606. doi: 10.1016/j.jhazmat.2020.124606

    CrossRef Google Scholar

    [81] Feng X, Wang Q, Sun Y, et al. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil[J]. Journal of Hazardous Materials, 2022, 424: 127364. doi: 10.1016/j.jhazmat.2021.127364

    CrossRef Google Scholar

    [82] Fei Y, Huang S, Zhang H, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of the Total Environment, 2020, 707: 135634. doi: 10.1016/j.scitotenv.2019.135634

    CrossRef Google Scholar

    [83] 黄福义, 杨凯, 张子兴, 等. 微塑料对河口沉积物抗生素抗性基因的影响[J]. 环境科学, 2019, 40(5): 2234−2239.

    Google Scholar

    Huang F Y, Yang K, Zhang Z X, et al. Effects of microplastics on antibiotic resistance genes in estuarine sediments[J]. Environmental Science, 2019, 40(5): 2234−2239.

    Google Scholar

    [84] 周昕原, 王言仔, 苏建强, 等. 微塑料对河水抗生素抗性基因的影响[J]. 环境科学, 2020, 40(9): 4076−4080.

    Google Scholar

    Zhou X Y, Wang Y Z, Su J Q, et al. Microplastics-induced shifts of diversity and abundance of antibiotic resistance genes in river water[J]. Environmental Science, 2020, 40(9): 4076−4080.

    Google Scholar

    [85] Hou J, Xu X, Yu H, et al. Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions[J]. Environment International, 2021, 149: 106398. doi: 10.1016/j.envint.2021.106398

    CrossRef Google Scholar

    [86] Wang J, Huang M, Wang Q, et al. LDPE microplastics significantly alter the temporal turnover of soil microbial communities[J]. Science of the Total Environment, 2020, 726: 138682. doi: 10.1016/j.scitotenv.2020.138682

    CrossRef Google Scholar

    [87] Zou Z, Li S, Wu J, et al. Effects of nanopolystyrene addition on nitrogen fertilizer fate, gaseous loss of N from the soil, and soil microbial community composition[J]. Journal of Hazardous Materials, 2022, 438: 129509. doi: 10.1016/j.jhazmat.2022.129509

    CrossRef Google Scholar

    [88] Li H Z, Zhu D, Lindhardt J H, et al. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem[J]. Environmental Science & Technology, 2021, 55(8): 4658−4668.

    Google Scholar

    [89] Rong L, Zhao L, Zhao L, et al. LDPE microplastics affect soil microbial communities and nitrogen cycling[J]. Science of the Total Environment, 2021, 773: 145640. doi: 10.1016/j.scitotenv.2021.145640

    CrossRef Google Scholar

    [90] de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17): 9656−9665.

    Google Scholar

    [91] Qian H, Zhang M, Liu G, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water, Air, & Soil Pollution, 2018, 229(8): 261.

    Google Scholar

    [92] Judy J D, Williams M, Gregg A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota[J]. Environmental Pollution, 2019, 252: 522−531. doi: 10.1016/j.envpol.2019.05.027

    CrossRef Google Scholar

    [93] Jiang T, Ma X, Tang Q, et al. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting[J]. Bioresource Technology, 2016, 217: 210−218. doi: 10.1016/j.biortech.2016.01.089

    CrossRef Google Scholar

    [94] Oberbeckmann S, Löder M G J, Labrenz M. Marine microplastic-associated biofilms—A review[J]. Environmental Chemistry, 2015, 12(5): 551−562. doi: 10.1071/EN15069

    CrossRef Google Scholar

    [95] Jiang P, Zhao S, Zhu L, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of the Total Environment, 2018, 624: 48−54. doi: 10.1016/j.scitotenv.2017.12.105

    CrossRef Google Scholar

    [96] Dussud C, Meistertzheim A L, Conan P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters[J]. Environmental Pollution, 2018, 236: 807−816. doi: 10.1016/j.envpol.2017.12.027

    CrossRef Google Scholar

    [97] 李汶璐, 王志超, 杨文焕, 等. 微塑料对沉积物细菌群落组成和多样性的影响[J]. 环境科学, 2022, 43(5): 2606−2613.

    Google Scholar

    Li W L, Wang Z C, Yang W H, et al. Effects of microplastics on bacterial community composition and diversity in sediments[J]. Environmental Science, 2022, 43(5): 2606−2613.

    Google Scholar

    [98] Zhou J, Gui H, Banfield C C, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211. doi: 10.1016/j.soilbio.2021.108211

    CrossRef Google Scholar

    [99] Frere L, Maignien L, Chalopin M, et al. Microplastic bacterial communities in the bay of Brest: Influence of polymer type and size[J]. Environmental Pollution, 2018, 242: 614−625. doi: 10.1016/j.envpol.2018.07.023

    CrossRef Google Scholar

    [100] Tender C, Devriese L, Haegeman A, et al. Bacterial community profiling of plastic litter in the Belgian Part of the North Sea[J]. Environmental Science & Technology, 2015, 49(16): 9629.

    Google Scholar

    [101] Sharma G, Burrows L L, Singer M. Diversity and evolution of myxobacterial type Ⅳ pilus systems[J]. Frontiers Microbiology, 2018, 9: 1630. doi: 10.3389/fmicb.2018.01630

    CrossRef Google Scholar

    [102] 刘淑丽, 简敏菲, 邹龙, 等. 鄱阳湖白鹤保护区微塑料表面微生物群落结构特征[J]. 环境科学, 2021, 43(3): 1447−1454.

    Google Scholar

    Liu S L, Jian M F, Zou L, et al. Microbial community structure on microplastic surface in Grus leucogeranus reserve of Poyang Lake[J]. Environmental Science, 2021, 43(3): 1447−1454.

    Google Scholar

    [103] 张耀之, 金慧娟, 李秀颖, 等. 1, 2, 3-三氯丙烷降解机制与污染场地修复技术研究进展[J]. 生物工程学报, 2021, 37(10): 3578−3590.

    Google Scholar

    Zhang Y Z, Jin H J, Li X Y, et al. Advances in degradation mechanisms of 1, 2, 3-trichloropropane and remediation technology of contaminated sites[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3578−3590.

    Google Scholar

    [104] Burges A, Fievet V, Oustriere N, et al. Long-term phytomanagement with compost and a sunflower-tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil[J]. Science of the Total Environment, 2020, 700: 134529. doi: 10.1016/j.scitotenv.2019.134529

    CrossRef Google Scholar

    [105] Zhou B, Wang J, Zhang H, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388: 121814. doi: 10.1016/j.jhazmat.2019.121814

    CrossRef Google Scholar

    [106] Wang J, Qin X, Guo J, et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers[J]. Water Research, 2020, 183: 116113. doi: 10.1016/j.watres.2020.116113

    CrossRef Google Scholar

    [107] Wang J, Lv S, Zhang M, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils[J]. Chemosphere, 2016, 151: 171−177. doi: 10.1016/j.chemosphere.2016.02.076

    CrossRef Google Scholar

    [108] Kong X, Jin D, Jin S, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem[J]. Journal of Hazardous Materials, 2018, 353: 142−150. doi: 10.1016/j.jhazmat.2018.04.015

    CrossRef Google Scholar

    [109] Wang Z G, You Y M, Xu W H, et al. Dimethyl phthalate altered the microbial metabolic pathways in a mollisol[J]. European Journal of Soil Science, 2018, 69(3): 439−449. doi: 10.1111/ejss.12545

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(312) PDF downloads(46) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint