Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 1
Article Contents

FENG Linxiu, LI Zhenghui, CAO Qiuxiang, TIAN Shihong, HUANG Wenxia, WANG Tian. A Review on the Development of Boron Isotope Analytical Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16-38. doi: 10.15898/j.cnki.11-2131/td.202209140170
Citation: FENG Linxiu, LI Zhenghui, CAO Qiuxiang, TIAN Shihong, HUANG Wenxia, WANG Tian. A Review on the Development of Boron Isotope Analytical Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16-38. doi: 10.15898/j.cnki.11-2131/td.202209140170

A Review on the Development of Boron Isotope Analytical Techniques

More Information
  • Boron (B) is a light and fluid-mobile element. It has two stable isotopes: 10B and 11B. The two isotopes fractionate significantly in nature due their relatively large mass difference. Therefore, B isotopes are one of the non-traditional stable isotope tracers, which have been used in the research areas of chemistry, environmental, bioscience, earth and planetary sciences. In the last twenty years, the analytical methods of B isotopes have been continuously improved and many important advances have been made. However, there are still some challenges to obtaining high-quality B isotope data. The techniques of B isotope analysis are quite different among laboratories, which arise principally from three stages: sample digestion, purification, mass spectrometry.

    Because B is volatile and isotopic fractionation may be induced by different coordination in different pH environments, sample digestion, and purification have a great impact on the high-precision measurement of B isotopes. Four digestion methods have been applied for extracting B from samples, including pyro-hydrolysis, acid dissolution, alkali fusion, and ashing. Pyro-hydrolysis requiring large volumes of water is time-consuming. Acid dissolution is one of the most popular techniques due to the small volumes of reagents needed and hence lower levels of contamination. Samples are dissolved with different acids such as hydrochloric, nitric, hydrofluoric, and perchloric. Painstaking attention is required with hydrofluoric acid since BF3 is highly volatile and easily lost in nature. Suitable amounts of mannitol are added during acid dissolution to form a stable boron-mannitol complex to prevent the loss of B and avoid B isotope fractionation.

    Alternatively, alkali fusion is a dissolution method for solid rock samples. High purity fluxing agent is needed, such as K2CO3, Na2CO3, NaOH, NaOH, and Na2O2. As all the B would be present as borate in the resulting alkaline solution, alkali fusion eliminates the risk of B isotope fractionation due to evaporation. The advantage of this method is that it is rapid and relatively large numbers of samples can be processed. The ashing is mainly used to digest plant samples. Ashing was chosen for plant sample decomposition because ashing removes the organics and avoids the use of reagents carrying a B blank or generating isobaric interferences.

    Once a sample is dissolved, it is necessary to purify B before analysis. There are two principal methods currently in use, which are ion exchange and microsublimation. The ion exchange techniques can be divided into those involved in using B-specific resin Amberlite IRA 743 and those using cation (AG50W-X8/AG50W-X12) or anion (Bio-Rad AG MP-1) cation exchange resins. Microsublimation is an effective and simple method to purify B. It is used to purify B from organic-enriched solutions. Microsublimation appears advantageous in terms of matrix removal efficiency and low procedural blank, however the technical challenges involved are also great.

    There are two main types of B isotope analytical methods: in-situ and solution methods. Solution methods analyse B ratios using thermal ionization mass spectrometry (TIMS) method or multiple collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The in-situ method, uses secondary ion mass spectrometry (SIMS) method or laser ablation multiple collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) to measure samples with high B concentration. The accurate and precise determination of the B isotope composition is still a difficult task. For solution methods, the difficulty arises principally from the near ubiquitous level of B contamination in most standard clean laboratories, the light mass of the element, the occurrence of only two stable isotopes, and the large mass difference between them. For in-situ approaches, the difficulty arises principally from a lack of reference materials, surface contamination, limited precision in low-concentration samples, and limitations in reproducibility in high-concentration samples. On the whole, MC-ICP-MS is the dominant method for B isotopic analysis, which is still has the challenges of matrix effect, memory effect, and mass bias.

    The relevant techniques inherent to the three stages of B isotope analysis are summarized and the advantages and disadvantages of the different techniques are discussed. The aim of the work contained in this paper is to further promote the progress and development of domestic and foreign scholars in the research of B isotope geochemistry.

  • 加载中
  • [1] Cantanzaro E J, Champion C E, Garner E L, et al. Boric acid: Isotopic and assay standard reference materials[M]. US: National Bureau Standards Special Publication, 1970, 260(17): 701.

    Google Scholar

    [2] Marschall H R, Foster G L. Boron isotopes in the Earth and planetary sciences-A short history and introduction[M]//Marschall H, Foster G. Boron Isotopes: The Fifth Element. Springer Press, 2018: 1-11.

    Google Scholar

    [3] Xiao J, Xiao Y K, Jin Z D, et al. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 2013, 60(4): 431-447. doi: 10.1080/08120099.2013.813585

    CrossRef Google Scholar

    [4] Gaillardet J, Lemarchand D. Boron in the weathering en-vironment[M]//Marschall H, Foster G. Boron Isotopes: The Fifth Element. Springer Press, 2018: 163-188.

    Google Scholar

    [5] 李银川, 董戈, 高昉, 等. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3): 14-28.

    Google Scholar

    Li Y C, Dong G, Gao F, et al. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study[J]. Earth Science Frontiers, 2020, 27(3): 14-28.

    Google Scholar

    [6] DeHoog J C M, Savov I P. Boron isotopes as a tracer of subduction zone processes[M]//Marschall H, Foster G. Boron isotopes: The fifth elelment. Springer Press, 2018: 217-247.

    Google Scholar

    [7] 蒋少涌, 于际民, 凌洪飞, 等. 壳-幔演化和板块俯冲作用过程中的硼同位素示踪[J]. 地学前缘, 2000, 7(2): 391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008

    CrossRef Google Scholar

    Jiang S Y, Yu J M, Ling H F, et al. Boron isotope as a tracer in the study of crust-mantle evolution and subduction processes[J]. Earth Science Frontiers, 2000, 7(2): 391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008

    CrossRef Google Scholar

    [8] Lemarchand D, Cividini D, Turpault M P, et al. Boron isotopes in different grain size fractions: Exploring past and present water-rock interactions from two soil profiles (Strengbach, Vosges Mountains)[J]. Geochimica et Cosmochimica Acta, 2012, 98: 78-93. doi: 10.1016/j.gca.2012.09.009

    CrossRef Google Scholar

    [9] Mao H R, Liu C Q, Zhao Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190: 439-459. doi: 10.1016/j.earscirev.2019.01.016

    CrossRef Google Scholar

    [10] 毛海若. 中国东部花岗岩风化过程中的硼同位素地球化学研究[D]. 贵阳: 中国科学院地球化学研究所, 2018.

    Google Scholar

    Mao H R. Boron isotope geochemistry during weathering of granite in eastern China[D]. Guiyang: Institute of Geochemistry Chinese Academy of Sciences, 2018.

    Google Scholar

    [11] Lei F, Wei H Z, Yi S W, et al. Variations of the East Asian monsoon over the past 800kyr constrained by the boron isotope composition of paleo-rainwater inferred from loess-paleosol deposits in NE China[J]. Earth and Planetary Science Letters, 2021, 561: 116826. doi: 10.1016/j.epsl.2021.116826

    CrossRef Google Scholar

    [12] Wei H Z, Lei F, Jiang S Y, et al. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China[J]. Quaternary Research, 2015, 83(1): 243-255. doi: 10.1016/j.yqres.2014.09.004

    CrossRef Google Scholar

    [13] 雷昉, 鹿化煜, 魏海珍, 等. 黄土高原南部黄土-古土壤酸溶相硼同位素组成(δ11B)及其对季风降水变化的指示[J]. 中国科学: 地球科学, 2014, 44(7): 1508-1518.

    Google Scholar

    Lei F, Lu H Y, Wei H Z, et al. Variation of monsoon precipitation revealed by boron isotopic composition of the acid soluble in loess-paleosol sediments from southern Chinese Loess Plateau[J]. Scientia Sinica Terrae, 2014, 44(7): 1508-1518.

    Google Scholar

    [14] Ryan J G, Leeman W P, Morris J D, et al. The boron systematics of intraplate lavas: Implications for crust and mantle evolution[J]. Geochimica et Cosmochimica Acta, 1996, 60(3): 415-422. doi: 10.1016/0016-7037(95)00402-5

    CrossRef Google Scholar

    [15] Palmer M R. Boron cycling in subduction zones[J]. Elements: An International Magazine of Mineralogy, Geochemistry and Petrology, 2017, 13(4): 237-242.

    Google Scholar

    [16] Liu H Q, Xu Y G, Wei G J, et al. B isotopes of Carboni-ferous-Permian volcanic rocks in the Tuha Basin mirror a transition from subduction to intraplate setting in central Asian Orogenic Belt[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 7946-7964. doi: 10.1002/2016JB013288

    CrossRef Google Scholar

    [17] Gou G N, Wang Q, Wyman D A, et al. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling[J]. Solid Earth Sciences, 2017, 2(2): 43-54. doi: 10.1016/j.sesci.2017.03.003

    CrossRef Google Scholar

    [18] Guo S, Zhao K D, John T, et al. Metasomatic flow of metacarbonate-derived fluids carrying isotopically heavy boron in continental subduction zones: Insights from tourmaline-bearing ultra-high pressure eclogites and veins (Dabie terrane, eastern China)[J]. Geochimica et Cosmochimica Acta, 2019, 253: 159-200. doi: 10.1016/j.gca.2019.03.013

    CrossRef Google Scholar

    [19] Tomanikova L, Savov I P, Harvey J, et al. A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks[J]. Geology, 2019, 47(6): 517-521. doi: 10.1130/G46092.1

    CrossRef Google Scholar

    [20] Zhang Y Y, Yuan C, Sun M, et al. Recycled oceanic crust in the form of pyroxenite contributing to the Cenozoic continental basalts in central Asia: New perspectives from olivine chemistry and whole-rock B-Mo isotopes[J]. Contributions to Mineralogy and Petrology, 2019, 174(10): 1-22.

    Google Scholar

    [21] Zhang Y Y, Yuan C, Sun M, et al. Molybdenum and boron isotopic evidence for carbon-recycling via carbonate dissolution in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 278: 340-352. doi: 10.1016/j.gca.2019.12.013

    CrossRef Google Scholar

    [22] Fan J J, Wang Q, Li J, et al. Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet[J]. Geochimica et Cosmochimica Acta, 2021, 297: 120-142. doi: 10.1016/j.gca.2021.01.005

    CrossRef Google Scholar

    [23] 林秋婷, 陈晨, 刘海洋. 硼的地球化学性质及其在俯冲带的循环与成矿初探[J]. 岩石学报, 2020, 36(1): 5-12.

    Google Scholar

    Lin Q T, Chen C, Liu H Y. Boron prospecting based on boron cycling in subduction zone[J]. Acta Petrologica Sinica, 2020, 36(1): 5-12.

    Google Scholar

    [24] 郭顺. 俯冲-碰撞带硼循环[J]. 矿物岩石地球化学通报, 2021, 40(5): 1049-1060.

    Google Scholar

    Guo S. Boron cycling in subduction-collision zones[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1049-1060.

    Google Scholar

    [25] Li Y C, Wei H Z, Palmer M R, et al. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes[J]. Chemical Geology, 2022, 609: 121047. doi: 10.1016/j.chemgeo.2022.121047

    CrossRef Google Scholar

    [26] Wei G J, McCulloch M T, Mortimer G, et al. Evidence for ocean acidification in the Great Barrier Reef of Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2332-2346. doi: 10.1016/j.gca.2009.02.009

    CrossRef Google Scholar

    [27] Wei G J, Wang Z B, Ke T, et al. Decadal variability in seawater pH in the West Pacific: Evidence from coral δ11B records[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7166-7181. doi: 10.1002/2015JC011066

    CrossRef Google Scholar

    [28] 刘卫国, 彭子成, 肖应凯, 等. 南海珊瑚礁硼同位素组成及环境意义[J]. 地球化学, 1999, 28(6): 534-541. doi: 10.3321/j.issn:0379-1726.1999.06.003

    CrossRef Google Scholar

    Liu W G, Peng Z C, Xiao Y K, et al. Boron isotopic composition of corals from South China Sea and their environmental significance[J]. Geochimica, 1999, 28(6): 534-541. doi: 10.3321/j.issn:0379-1726.1999.06.003

    CrossRef Google Scholar

    [29] 肖应凯, Swihard G H, 肖云, 等. 海水蒸发时蒸气相硼的浓度及硼同位素分馏研究[J]. 盐湖研究, 2001, 9(4): 15-23. doi: 10.3969/j.issn.1008-858X.2001.04.003

    CrossRef Google Scholar

    Xiao Y K, Swihard G H, Xiao Y, et al. A preliminary study of theboron concentration in vapor and the iostopic fracnation of boron during evapooration of seawater[J]. Journal of Salt Lake Research, 2001, 9(4): 15-23. doi: 10.3969/j.issn.1008-858X.2001.04.003

    CrossRef Google Scholar

    [30] 马云麒, 肖应凯, 贺茂勇, 等. 中国古生代腕足和珊瑚的硼同位素特征[J]. 中国科学: 地球科学, 2011, 41(7): 984-999.

    Google Scholar

    Ma Y Q, Xiao Y K, He M Y, et al. Boron isotopic composition of paleozoic brachiopod and coeval coral calcites in Yunnan-Guizhou Plateau, China[J]. Scientia Sinica Terrae, 2011, 41(7): 984-999.

    Google Scholar

    [31] 柯婷, 韦刚健, 刘颖, 等. 南海北部珊瑚高分辨率硼同位素组成及其对珊瑚礁海水pH变化的指示意义[J]. 地球化学, 2015, 44(1): 1-8. doi: 10.3969/j.issn.1007-2802.2015.01.001

    CrossRef Google Scholar

    Ke T, Wei G J, Liu Y, et al. High resolution boron isotopic compositions of a coral from the northern South China Sea and their implications for reconstruction of seawater pH[J]. Geochimica, 2015, 44(1): 1-8. doi: 10.3969/j.issn.1007-2802.2015.01.001

    CrossRef Google Scholar

    [32] Wei H Z, Zhao Y, Liu X, et al. Evolution of paleo-climate and seawater pH from theLate Permian to postindustrial periods recorded by boron isotopes and B/Ca in biogenic carbonates[J]. Earth-Science Reviews, 2021, 215: 103546. doi: 10.1016/j.earscirev.2021.103546

    CrossRef Google Scholar

    [33] Wang Y J, Wei H Z, Jiang S Y, et al. Mechanism of boron incorporation into calcites and associated isotope fractionation in a steady-state carbonate-seawater system[J]. Applied Geochemistry, 2018, 98: 221-236. doi: 10.1016/j.apgeochem.2018.09.013

    CrossRef Google Scholar

    [34] Wei H Z, Jiang S Y, Xiao Y K, et al. Boron isotopic fractionation and trace element incorporation in various species of modern corals in Sanya Bay, South China Sea[J]. Journal of Earth Science, 2014, 25(3): 431-444. doi: 10.1007/s12583-014-0438-2

    CrossRef Google Scholar

    [35] Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contributions to Mineralogy and Petrology, 1989, 103(4): 434-451. doi: 10.1007/BF01041751

    CrossRef Google Scholar

    [36] Su Z K, Zhao X F, Li X C, et al. Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: The worldclass Dahongshan Fe-Cu deposit in SW China[J]. Chemical Geology, 2016, 441: 265-279. doi: 10.1016/j.chemgeo.2016.08.030

    CrossRef Google Scholar

    [37] Codeço M S, Weis P, Trumbull R B, et al. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal[J]. Chemical Geology, 2017, 468: 1-16. doi: 10.1016/j.chemgeo.2017.07.011

    CrossRef Google Scholar

    [38] Zheng Z, Deng X H, Chen H J, et al. Fluid sources and metallogenesis in the Baiganhu W-Sn deposit, East Kunlun, NW China: Insights from chemical and boron isotopic compositions of tourmaline[J]. Ore Geology Reviews, 2016, 72: 1129-1142. doi: 10.1016/j.oregeorev.2015.09.006

    CrossRef Google Scholar

    [39] Yang S Y, Jiang S Y, Palmer M R. Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: Implication for their formation from B-rich melt to hydrothermal fluids[J]. Chemical Geology, 2015, 419: 102-113. doi: 10.1016/j.chemgeo.2015.10.026

    CrossRef Google Scholar

    [40] 张天睿, 汤书婷, 颜妍, 等. 地下水样品中硼同位素组成的测定[J]. 世界核地质科学, 2020, 37(2): 6.

    Google Scholar

    Zhang T R, Tang S T, Yan Y, et al. Determination of boron isotopic composition in groundwater samples[J]. World Nuclear Geoscience, 2020, 37(2): 6.

    Google Scholar

    [41] Wei H Z, Jiang S Y, Tan H B, et al. Boron isotope geochemistry of salt sediments from the Dongtai Salt Lake in Qaidam Basin: Boron budget and sources[J]. Chemical Geology, 2014, 380: 74-83. doi: 10.1016/j.chemgeo.2014.04.026

    CrossRef Google Scholar

    [42] Li Y C, Wei H Z, Palmer M R, et al. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids[J]. Chemical Geology, 2021, 561: 120030. doi: 10.1016/j.chemgeo.2020.120030

    CrossRef Google Scholar

    [43] Zhao Y, Wei H Z, Liu X, et al. Isotope evidence for multiple sources of B and Cl in Middle Miocene (Badenian) evaporites, Carpathian Mountains[J]. Applied Geochemistry, 2021, 124: 104819. doi: 10.1016/j.apgeochem.2020.104819

    CrossRef Google Scholar

    [44] Li Y C, Chen H W, Wei H Z, et al. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study[J]. Chemical Geology, 2020, 536: 119466. doi: 10.1016/j.chemgeo.2020.119466

    CrossRef Google Scholar

    [45] Wu H P, Jiang S Y, Wei H Z, et al. An experimental study of organic matters that cause isobaric ions interference for boron isotopic measurement by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2012, 328: 67-77.

    Google Scholar

    [46] Aggarwal S K, You C F. A review on the determination of isotope ratios of boron with mass spectrometry[J]. Mass Spectrometry Reviews, 2017, 36(4): 499-519. doi: 10.1002/mas.21490

    CrossRef Google Scholar

    [47] Marschall H, Foster G. Boron isotopes[M]. Springer, 2018: 13-33.

    Google Scholar

    [48] 吕苑苑, 赵平, 高剑峰, 等. 硼同位素分析方法研究进展[J]. 地质科学, 2009(3): 1052-1061. doi: 10.3321/j.issn:0563-5020.2009.03.021

    CrossRef Google Scholar

    Lyu Y Y, Zhao P, Gao J F, et al. Research progress of boron isotope analysis methods[J]. Chinese Journal of Geology, 2009(3): 1052-1061. doi: 10.3321/j.issn:0563-5020.2009.03.021

    CrossRef Google Scholar

    [49] Marschall H R, Monteleone B D. Boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry[J]. Geostandards and Geoanalytical Research, 2015, 39(1): 31-46. doi: 10.1111/j.1751-908X.2014.00289.x

    CrossRef Google Scholar

    [50] Fietzke J, Heinemann A, Taubner I, et al. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(12): 1953-1957. doi: 10.1039/c0ja00036a

    CrossRef Google Scholar

    [51] Foster G L, Ni Y, Haley B, et al. Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS[J]. Chemical Geology, 2006, 230(1-2): 161-174. doi: 10.1016/j.chemgeo.2005.12.006

    CrossRef Google Scholar

    [52] Ni Y, Foster G L, Elliott T. The accuracy of δ11B measurements of foraminifers[J]. Chemical Geology, 2010, 274(3-4): 187-195. doi: 10.1016/j.chemgeo.2010.04.008

    CrossRef Google Scholar

    [53] Misra S, Owen R, Kerr J, et al. Determination of δ11B by HR-ICP-MS from mass limited samples: Application to natural carbonates and water samples[J]. Geochimica et Cosmochimica Acta, 2014, 140: 531-552. doi: 10.1016/j.gca.2014.05.047

    CrossRef Google Scholar

    [54] Hemming N G, Hönisch B. Boron isotopes in marine carbonate sediments and the pH of the ocean[J]. Developments in Marine Geology, 2007, 1: 717-734.

    Google Scholar

    [55] Kasemann S A, Schmidt D N, Bijma J, et al. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH[J]. Chemical Geology, 2009, 260(1-2): 138-147. doi: 10.1016/j.chemgeo.2008.12.015

    CrossRef Google Scholar

    [56] Foster G L, Hönisch B, Paris G, et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS[J]. Chemical Geology, 2013, 358: 1-14. doi: 10.1016/j.chemgeo.2013.08.027

    CrossRef Google Scholar

    [57] He M Y, Xiao Y K, Zhang D J, et al. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. Analytical Chemistry, 2013, 85(13): 6248-6253. doi: 10.1021/ac400066r

    CrossRef Google Scholar

    [58] Trotter J, Montagna P, McCulloch M, et al. Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy[J]. Earth and Planetary Science Letters, 2011, 303(3-4): 163-173. doi: 10.1016/j.epsl.2011.01.030

    CrossRef Google Scholar

    [59] Hemming N G, Hanson G N. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry[J]. Chemical Geology, 1994, 114(1-2): 147-156. doi: 10.1016/0009-2541(94)90048-5

    CrossRef Google Scholar

    [60] Spivack A J, Edmond J M. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation[J]. Analytical Chemistry, 1986, 58(1): 31-35. doi: 10.1021/ac00292a010

    CrossRef Google Scholar

    [61] Palmer M R. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: Evidence for involvement of the subducted slab[J]. Geology, 1991, 19(3): 215-217. doi: 10.1130/0091-7613(1991)019<0215:BISOHA>2.3.CO;2

    CrossRef Google Scholar

    [62] Aggarwal J K, Palmer M R. Boron isotope analysis: A review[J]. Analyst, 1995, 120(5): 1301-1307. doi: 10.1039/an9952001301

    CrossRef Google Scholar

    [63] Nakamura E, Ishikawa T, Birck J L, et al. Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex[J]. Chemical Geology, 1992, 94(3): 193-204. doi: 10.1016/S0009-2541(10)80004-X

    CrossRef Google Scholar

    [64] 肖应凯, 廖步勇, 王中良, 等. 长江口咸淡水混合过程中溶解态硼的含量及同位素组成特征[J]. 矿物岩石地球化学通报, 2003, 22(4): 324-327. doi: 10.3969/j.issn.1007-2802.2003.04.008

    CrossRef Google Scholar

    Xiao Y K, Liao B Y, Wang Z L, et al. The content and isotopic composition of dissolved boron during the mixing of salt and fresh water in the Yangtze Estuary[J]. Bulletin of Mineralogy, Petrollgy and Geochemistry, 2003, 22(4): 324-327. doi: 10.3969/j.issn.1007-2802.2003.04.008

    CrossRef Google Scholar

    [65] Wei H Z, Xiao Y K, Sun A, et al. Effective elimination of isobaric ions interference and precise thermal ionization mass spectrometer analysis for boron isotope[J]. International Journal of Mass Spectrometry, 2004, 235(2): 187-195. doi: 10.1016/j.ijms.2004.04.010

    CrossRef Google Scholar

    [66] 马学海, 马云麒, 宋建国, 等. 三步离子交换法用于高精度测定硝酸盐卤水样品中硼同位素[J]. 分析化学, 2020, 48(6): 780-785.

    Google Scholar

    Ma X H, Ma Y Q, Song J G, et al. Three-step ion exchange method for high-precision determination of boron isotopes in nitrate brine samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(6): 780-785.

    Google Scholar

    [67] Musashi M, Oi T, Ossaka T, et al. Extraction of boron from GSJ rock reference samples and determination of their boron isotopic ratios[J]. Analytica Chimica Acta, 1990, 231: 147-150. doi: 10.1016/S0003-2670(00)86411-9

    CrossRef Google Scholar

    [68] Tonarini S, Pennisi M, Leeman W P. Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation[J]. Chemical Geology, 1997, 142(1-2): 129-137. doi: 10.1016/S0009-2541(97)00087-9

    CrossRef Google Scholar

    [69] Roux P, Turpault M P, Kirchen G, et al. Boron dissolved and particulate atmospheric inputs to a forest ecosystem (northeastern France)[J]. Environmental Science and Technology, 2017, 51(24): 14038-14046. doi: 10.1021/acs.est.7b03226

    CrossRef Google Scholar

    [70] Chetelat B, Liu C Q, Gaillardet J, et al. Boron isotopes geochemistry of the Changjiang Basin Rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6084-6097. doi: 10.1016/j.gca.2009.07.026

    CrossRef Google Scholar

    [71] Cai Y, Rasbury E T, Wooton K M, et al. Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2153-2163. doi: 10.1039/D1JA00195G

    CrossRef Google Scholar

    [72] Wei H Z, Jiang S Y, Hemming N G, et al. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry[J]. Talanta, 2014, 123: 151-160. doi: 10.1016/j.talanta.2014.02.009

    CrossRef Google Scholar

    [73] Buisson M, Louvat P, Thaler C, et al. High precision MC-ICP-MS measurements of 11B/10B ratios from ng amounts of boron in carbonate samples using microsublimation and direct injection (μ-dDIHEN)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2116-2131. doi: 10.1039/D1JA00109D

    CrossRef Google Scholar

    [74] Makishima A, Nakamura E, Nakano T. Determination of boron in silicate samples by direct aspiration of sample HF solutions into ICPMS[J]. Analytical Chemistry, 1997, 69(18): 3754-3759. doi: 10.1021/ac970383s

    CrossRef Google Scholar

    [75] Wei G J, Wei J X, Liu Y, et al. Measurement on high-precision boron isotope of silicate materials by a single column purification method and MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 606-612. doi: 10.1039/c3ja30333k

    CrossRef Google Scholar

    [76] Krolikowska-Ciaglo S, Deyhle A, Hauff F, et al. Boron isotope geochemistry and U-Pb systematics of altered MORB from the Australian Antarctic Discordance (ODP Leg 187)[J]. Chemical Geology, 2007, 242(3-4): 455-469. doi: 10.1016/j.chemgeo.2007.05.004

    CrossRef Google Scholar

    [77] Pi J, You C F, Chung C H. Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 861-867. doi: 10.1039/C3JA50344E

    CrossRef Google Scholar

    [78] 晏雄, 蒋少涌, 魏海珍, 等. 硼硅酸盐矿物硼的化学分离纯化与同位素测定方法[J]. 分析化学, 2012, 40(11): 1654-1660.

    Google Scholar

    Yan X, Jiang S Y, Wei H Z, et al. Chemical separation, purification and isotopic determination of borosilicate mineral boron[J]. Chinese Journal of Analytical Chemistry, 2012, 40(11): 1654-1660.

    Google Scholar

    [79] Bhushan K S, Goswami P G, Venkatesh K, et al. Fusion method for sample preparation for isotopic composition determination of boron in refractory materials by thermal ionizationmass spectrometry with validation using dissolved and purified sample[J]. International Journal of Mass Spectrometry, 2021, 467: 116624. doi: 10.1016/j.ijms.2021.116624

    CrossRef Google Scholar

    [80] 王刚, 肖应凯. 盐湖卤水硼同位素测定中硼的二次离子交换分离[J]. 分析化学, 2000, 28(8): 936-940. doi: 10.3321/j.issn:0253-3820.2000.08.003

    CrossRef Google Scholar

    Wang G, Xiao Y K. Secondary ion exchange separation of boron in the determination of boron isotope in salt lake brine[J]. Chinese Journal of Analytical Chemistry, 2000, 28(8): 936-940. doi: 10.3321/j.issn:0253-3820.2000.08.003

    CrossRef Google Scholar

    [81] Xiao J, Vogl J, Rosner M, et al. A validated analytical procedure for boron isotope analysis in plants by MC-ICP-MS[J]. Talanta, 2019, 196: 389-394. doi: 10.1016/j.talanta.2018.12.087

    CrossRef Google Scholar

    [82] Xu Q C, Dong Y L, Zhu H Y, et al. Separation and analysis of boron isotope in high plant by thermal ionization mass spectrometry[J]. International Journal of Analytical Chemistry, 2015: 36424.

    Google Scholar

    [83] Vogl J, Rosner M. Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial materials[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 161-175. doi: 10.1111/j.1751-908X.2011.00136.x

    CrossRef Google Scholar

    [84] Rosner M, Pritzkow W, Vogl J, et al. Development and validation of a method to determine the boron isotopic composition of crop plants[J]. Analytical Chemistry, 2011, 83(7): 2562-2568. doi: 10.1021/ac102836h

    CrossRef Google Scholar

    [85] 刘善江, 赵丽萍. 植株中全硼测定方法的研究[J]. 华北农学报, 2007, 22(2): 169-170. doi: 10.3321/j.issn:1000-7091.2007.02.041

    CrossRef Google Scholar

    Liu S J, Zhao L P. Study on determination of total boron in plants[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(2): 169-170. doi: 10.3321/j.issn:1000-7091.2007.02.041

    CrossRef Google Scholar

    [86] Vanderpool R A, Johnson P E. Boron isotope ratios in commercial produce and boron-10 foliar and hydroponic enriched plants[J]. Journal of Agricultural and Food Chemistry, 1992, 40(3): 462-466. doi: 10.1021/jf00015a020

    CrossRef Google Scholar

    [87] Roux P, Lemarchand D, Hughes H J, et al. A rapid method for determining boron concentration (ID-ICP-MS) and δ11B (MC-ICP-MS) in vegetation samples after microwave digestion and cation exchange chemical purification[J]. Geostandards and Geoanalytical Research, 2015, 39(4): 453-466. doi: 10.1111/j.1751-908X.2014.00328.x

    CrossRef Google Scholar

    [88] 宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    CrossRef Google Scholar

    Song W J, Dai S F, Zhao L, et al. Microwave digestion-inductively coupled plasma mass spectrometry for the determination of boron in coal[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    CrossRef Google Scholar

    [89] Beary E S, Xiao Y K. Rapid and high-precision determination of boron isotope ratios in boron carbide by thermal ionisation mass spectrometric measurement of the dicaesium metaborate cation[J]. Analyst, 1990, 115(7): 911-913. doi: 10.1039/an9901500911

    CrossRef Google Scholar

    [90] Ishikawa T, Nakamura E. Suppression of boron volatili-zation from a hydrofluoric acid solution using a boron-mannitol complex[J]. Analytical Chemistry, 2001, 62(23): 2612-2616.

    Google Scholar

    [91] Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth and Planetary Science Letters, 2001, 188(1-2): 123-133. doi: 10.1016/S0012-821X(01)00315-6

    CrossRef Google Scholar

    [92] Xiao Y K, Liao B Y, Liu W G, et al. Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin[J]. Chinese Journal of Chemistry, 2003, 21(8): 1073-1079.

    Google Scholar

    [93] 肖应凯, 王蕴慧, 曹海霞. 离子交换法分离硼——用于盐湖水中硼同位素丰度比值的质谱法测定[J]. 分析化学, 1983, 11(8): 604-607.

    Google Scholar

    Xiao Y K, Wang Y H, Cao H X. Separation of boron by ion exchange-mass spectrometry determination of boron isotope abundance ratios in salt lake water[J]. Chinese Journal of Analytical Chemistry, 1983, 11(8): 604-607.

    Google Scholar

    [94] Wang Q Z, Xiao Y K, Wang Y H, et al. Boron separation by the two-step ion-exchange for the isotopic measurement of boron[J]. Chinese Journal of Chemistry, 2002, 20(1): 45-50.

    Google Scholar

    [95] 李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成[J]. 岩矿测试, 2020, 39(3): 417-424.

    Google Scholar

    Li Z X, Lu H. One-step ion-exchange separation and measurement of boron isotope ratios in high calcium biological samples with by MC-ICP-MS[J]. Rock and Mineral Analysis, 2020, 39(3): 417-424.

    Google Scholar

    [96] Kiss E. Ion-exchange separation and spectrophotometric determination of boron in geological materials[J]. Analytica Chimica Acta, 1988, 211: 243-256. doi: 10.1016/S0003-2670(00)83684-3

    CrossRef Google Scholar

    [97] Leeman W P, Vocke Jr R D, Beary E S, et al. Precise boron isotopic analysis of aqueous samples: Ion exchange extraction and mass spectrometry[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3901-3907. doi: 10.1016/0016-7037(91)90085-J

    CrossRef Google Scholar

    [98] Lemarchand D, Gaillardet J, Göpel C, et al. An optimized procedure for boron separation and mass spectrometry analysis for river samples[J]. Chemical Geology, 2002, 182(2-4): 323-334. doi: 10.1016/S0009-2541(01)00329-1

    CrossRef Google Scholar

    [99] Yoshimura K, Miyazaki Y, Ota F, et al. Complexation of boric acid with the N-methyl-D-glucamine group in solution and in crosslinked polymer[J]. Journal of the Chemical Society, 1998, 94(5): 683-689.

    Google Scholar

    [100] 王刚, 肖应凯, 王蕴慧, 等. 岩石中硼的提取分离及同位素组成的测定[J]. 岩矿测试, 2000, 19(3): 169-172. doi: 10.3969/j.issn.0254-5357.2000.03.002

    CrossRef Google Scholar

    Wang G, Xiao Y K, Wang Y H, et al. Extraction and separation of boron in rocks and determination of isotopic composition[J]. Rock and Mineral Analysis, 2000, 19(3): 169-172. doi: 10.3969/j.issn.0254-5357.2000.03.002

    CrossRef Google Scholar

    [101] Vengosh A, Chivas A R, McCulloch M T. Direct deter-mination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry[J]. Chemical Geology, 1989, 79(4): 333-343.

    Google Scholar

    [102] He M Y, Deng L, Lu H, et al. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1026-1032. doi: 10.1039/C9JA00007K

    CrossRef Google Scholar

    [103] 吕苑苑, 许荣华, 赵平, 等. 利用MC-ICP-MS对水样中硼同位素比值的测定[J]. 地球化学, 2008, 37(1): 1-8.

    Google Scholar

    Lyu Y Y, Xu R H, Zhao P. Determination of boron isotope ratios in aqueous samples by multiple collector ICP-MS[J]. Geochimica, 2008, 37(1): 1-8.

    Google Scholar

    [104] Foster G L. Seawater pH, pCO2 and[CO32-] variations in the Caribbean Sea over the last 130kyr: A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.epsl.2008.04.015

    CrossRef Google Scholar

    [105] McCulloch M T, Holcomb M, Rankenburg K, et al. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates[J]. Rapid Communications in Mass Spectrometry, 2014, 28(24): 2704-2712. doi: 10.1002/rcm.7065

    CrossRef Google Scholar

    [106] Liu Y H, Huang K F, Lee D C. Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 846-855. doi: 10.1039/C7JA00400A

    CrossRef Google Scholar

    [107] 张艳灵, 肖应凯, 马云麒, 等. 三步离子交换方法用于黏土沉积物酸溶相中硼同位素测定[J]. 分析化学, 2016, 44(5): 809-815.

    Google Scholar

    Zhang Y L, Xiao Y K, Ma Y Q, et al. Three-step ion exchange method for boron isotope determination in acid solution phase of clay sediments[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 809-815.

    Google Scholar

    [108] 杨剑, 马云麒, 李兴意, 等. 乙二胺四乙酸二钠用于沉积物酸溶相中高精度硼同位素测定方法研究[J]. 分析化学, 2019, 47(9): 1433-1439.

    Google Scholar

    Yang J, Ma Y Q, Li X Y, et al. Study on high-precision determination of boron isotope in acid solution phase of sediment by disodium EDTA[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1433-1439.

    Google Scholar

    [109] 魏静娴. Ⅰ. 硅酸盐高精度B同位素测定方法的建立及其应用Ⅱ. 南海海山玄武岩的年代学和地球化学研究[D]. 北京: 中国科学院大学, 2015.

    Google Scholar

    Wei J X. Ⅰ. High-precision measurement of boron isotope of silicate materials and its application. Ⅱ. Geochronological and geochemical studies on Cenozoic basalts from South China Sea Seamounts[D]. Beijing: University of Chinese Academy of Sciences, 2015.

    Google Scholar

    [110] Gaillardet J, Lemarchand D, Göpel C, et al. Evaporation and sublimation of boric acid: Application for boron purification from organic rich solutions[J]. Geostandards Newsletter, 2001, 25(1): 67-75. doi: 10.1111/j.1751-908X.2001.tb00788.x

    CrossRef Google Scholar

    [111] Birck J L, Barman M R, Capmas F. Re-Os isotopic measurements at the femtomole level in natural samples[J]. Geostandards Newsletter, 1997, 21(1): 19-27. doi: 10.1111/j.1751-908X.1997.tb00528.x

    CrossRef Google Scholar

    [112] Wang B S, You C F, Huang K F, et al. Direct separation of boron from Na-and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS[J]. Talanta, 2010, 82(4): 1378-1384. doi: 10.1016/j.talanta.2010.07.010

    CrossRef Google Scholar

    [113] Raitzsch M, Bijma J, Benthien A, et al. Boron isotope-based seasonal paleo-pH reconstruction for the southeast Atlantic-A multispecies approach using habitat preference of planktonic foraminifera[J]. Earth and Planetary Science Letters, 2018, 487: 138-150. doi: 10.1016/j.epsl.2018.02.002

    CrossRef Google Scholar

    [114] Liu M C, Nittler L R, Alexander C M O D, et al. Lithium-beryllium-boron isotopic compositions in meteoritic hibonite: Implications for origin of 10Be and early Solar system irradiation[J]. The Astrophysical Journal Letters, 2010, 719(1): L99. doi: 10.1088/2041-8205/719/1/L99

    CrossRef Google Scholar

    [115] Wang T H, You C F, Chung C H, et al. Macro-sublimation: Purification of boron in low-concentration geological samples for isotopic determination by MC-ICPMS[J]. Microchemical Journal, 2020, 152: 104424. doi: 10.1016/j.microc.2019.104424

    CrossRef Google Scholar

    [116] Liu Y W, Aciego S M, Wanamaker Jr A D, et al. A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2013, 27(15): 1705-1714. doi: 10.1002/rcm.6619

    CrossRef Google Scholar

    [117] He M Y, Xiao Y, Ma Y Q, et al. Effective elimination of organic matter interference in boron isotopic analysis by thermal ionization mass spectrometry of coral/foraminifera: Micro-sublimation technology combined with ion exchange[J]. Rapid Communications in Mass Spectrometry, 2011, 25(6): 743-749. doi: 10.1002/rcm.4906

    CrossRef Google Scholar

    [118] van Hoecke K, Devulder V, Claeys P, et al. Comparison of microsublimation and ion exchange chromatography for boron isolation preceding its isotopic analysis via multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(10): 1819-1826. doi: 10.1039/C4JA00111G

    CrossRef Google Scholar

    [119] 肖军, 贺茂勇, 邓丽, 等. 一种简便、快速、高效文分离富集硼的装置和方法:

    Google Scholar

    CN201910887796. X[P]. 2019-11-29. Xiao J, He M Y, Deng L, et al. A simple, fast and efficient device and method for separating and enriching boron: CN201910887796. X[P]. 2019-11-29.

    Google Scholar

    [120] Ramakumar K, Parab A, Khodade P, et al. Determination of isotopic composition of boron[J]. Journal of Radioanalytical and Nuclear Chemistry, 1985, 94(1): 53-61. doi: 10.1007/BF02199553

    CrossRef Google Scholar

    [121] Swihart G H. Instrumental techniques for boron isotope analysis[M]//Boron. Elsevier Press, 2018: 845-864.

    Google Scholar

    [122] Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1988, 85(2): 203-213. doi: 10.1016/0168-1176(88)83016-7

    CrossRef Google Scholar

    [123] Nakano T, Nakamura E. Static multicollection of Cs2BO2+ ions for precise boron isotope analysis with positive thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 1998, 176(1-2): 13-21. doi: 10.1016/S1387-3806(98)14014-9

    CrossRef Google Scholar

    [124] Deyhle A. Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. International Journal of Mass Spectrometry, 2001, 206(1-2): 79-89. doi: 10.1016/S1387-3806(00)00387-0

    CrossRef Google Scholar

    [125] Zeininger H, Heumann K G. Boron isotope ratio measure-ment by negative thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Physics, 1983, 48: 377-380. doi: 10.1016/0020-7381(83)87106-X

    CrossRef Google Scholar

    [126] Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8

    CrossRef Google Scholar

    [127] Kasemann S, Meixner A, Rocholl A, et al. Boron and oxygen isotope composition of certified reference materials NIST SRM610/612 and reference materials JB-2 and JR-2[J]. Geostandards Newsletter, 2001, 25(2-3): 405-416. doi: 10.1111/j.1751-908X.2001.tb00615.x

    CrossRef Google Scholar

    [128] You C F. Thermal ionization mass spectrometry tech-niques for boron isotopic analysis: A review[J]. Handbook of Stable Isotope Analytical Techniques, 2004, 1: 142-152.

    Google Scholar

    [129] Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232. doi: 10.1126/science.aaa0193

    CrossRef Google Scholar

    [130] Farmer J R, Hönisch B, Uchikawa J. Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates[J]. Chemical Geology, 2016, 447: 173-182. doi: 10.1016/j.chemgeo.2016.11.008

    CrossRef Google Scholar

    [131] Barth S. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization masss pectrometry[J]. Chemical Geology, 1997, 143(3-4): 255-261. doi: 10.1016/S0009-2541(97)00107-1

    CrossRef Google Scholar

    [132] 李世珍, 肖应凯, 魏海珍, 等. 硼同位素的负热电离质谱测定及其进展[J]. 盐湖研究, 2003, 11(4): 13-19. doi: 10.3969/j.issn.1008-858X.2003.04.002

    CrossRef Google Scholar

    Li S Z, Xiao Y K, Wei H Z, et al. Negative thermal ionization mass spectrometry determination of boron isotopes and its progress[J]. Journal of Salt Lake Research, 2003, 11(4): 13-19. doi: 10.3969/j.issn.1008-858X.2003.04.002

    CrossRef Google Scholar

    [133] Tonarini S, Pennisi M, Gonfiantini R. Boron isotope determinations in waters and other geological materials: Analytical techniques and inter-calibration of measurements[J]. Isotopes in Environmental and Health Studies, 2009, 45(2): 169-183. doi: 10.1080/10256010902931210

    CrossRef Google Scholar

    [134] 逯海, 王军, 任同祥, 等. 全蒸发-热电离同位素质谱法测量结果精密度和准确性探讨[J]. 中国矿物岩石地球化学通报, 2011, 30(增刊), 504.

    Google Scholar

    Lu H, Wang J, Ren T X, et al. Discussion on the precision and accuracy of measurement results by total evaporation-thermal ionization isotope mass spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(Supplement), 504.

    Google Scholar

    [135] Guerrot C, Millot R, Robert M, et al. Accurate and high-precision determination of boron isotopic ratios at low concentration by MC-ICP-MS (Neptune)[J]. Geostandards and Geoanalytical Research, 2011, 35(2): 275-284. doi: 10.1111/j.1751-908X.2010.00073.x

    CrossRef Google Scholar

    [136] Feldmann I, Tittes W, Jakubowski N, et al. Performance characteristics of inductively coupled plasma mass spectrometry with high mass resolution[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(9): 1007-1014. doi: 10.1039/ja9940901007

    CrossRef Google Scholar

    [137] Montaser A. Inductively coupled plasma mass spectro-metry[M]. John Wiley and Sons, 1998.

    Google Scholar

    [138] Chen X F, Zhang L, Wei G J, et al. Matrix effects and mass bias caused by inorganic acids on boron isotope determination by multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2410-2417. doi: 10.1039/C6JA00328A

    CrossRef Google Scholar

    [139] Smit M A, Scherstén A, Naeraa T, et al. Formation of Archean continental crust constrained by boron isotopes[J]. Geochemical Perspectives Letters, 2019, 12: 23-26.

    Google Scholar

    [140] Wei H Z, Jiang S Y, Yang T L, et al. Effect of metasilicate matrices on boron purification by Amberlite IRA 743 boron specific resin and isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(11): 2104-2107. doi: 10.1039/C4JA00153B

    CrossRef Google Scholar

    [141] Mueller E, Kucharkowski R, Michel V, et al. Simul-taneous determination of the constituents in Al-Ge-Si alloys by inductively coupled plasma atomic emission spectrometry[J]. Fresenius' Journal of Analytical Chemistry, 1996, 355(3): 267-268.

    Google Scholar

    [142] Al-Ammar A S, Gupta R K, Barnes R M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(6): 629-635. doi: 10.1016/S0584-8547(00)00197-X

    CrossRef Google Scholar

    [143] Evans S, Meisel T. Low blank determination of boron in geochemical materials[J]. Analytica Chimica Acta, 1994, 298(2): 267-270. doi: 10.1016/0003-2670(94)00269-X

    CrossRef Google Scholar

    [144] Probst T U, Berryman N G, Lemmen P, et al. Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy[J]. Journal of Analytical Atomic Spectrometry, 1997, 12(10): 1115-1122. doi: 10.1039/a700445a

    CrossRef Google Scholar

    [145] Louvat P, Bouchez J, Paris G. MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): Optimisation and application to boron in seawater and carbonate samples[J]. Geostandards and Geoanalytical Research, 2011, 35(1): 75-88. doi: 10.1111/j.1751-908X.2010.00057.x

    CrossRef Google Scholar

    [146] Louvat P, Moureau J, Paris G, et al. A fully automated direct injection nebulizer (d-DIHEN) for MC-ICP-MS isotope analysis: Application to boron isotope ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1698-1707. doi: 10.1039/C4JA00098F

    CrossRef Google Scholar

    [147] Zhang S, Henehan M J, Hull P M, et al. Investigating controls on boron isotope ratios in shallow marine carbonates[J]. Earth and Planetary Science Letters, 2017, 458: 380-393. doi: 10.1016/j.epsl.2016.10.059

    CrossRef Google Scholar

    [148] Zhu G H, Ma J L, Wei G J, et al. Boron mass fractions and δ11B values of eighteen international geological reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 583-598. doi: 10.1111/ggr.12397

    CrossRef Google Scholar

    [149] Albarède F, Albalat E, Télouk P. Instrumental isotope fractionation in multiple-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(8): 1736-1742. doi: 10.1039/C5JA00188A

    CrossRef Google Scholar

    [150] Rehkämper M, Schönbächler M, Stirling C H. Multiple collector ICP-MS: Introduction to instrumentation, measurement techniques and analytical capabilities[J]. Geostandards Newsletter, 2001, 25(1): 23-40. doi: 10.1111/j.1751-908X.2001.tb00785.x

    CrossRef Google Scholar

    [151] 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 385.

    Google Scholar

    Zhang H F, Gao S. Geochemistry[M]. Beijing: Geological Publishing House, 2012: 385.

    Google Scholar

    [152] Chaussidon M, Robert F, Mangin D, et al. Analytical procedures for the measurement of boron isotope compositions by ion microprobe in meteorites and mantle rocks[J]. Geostandards Newsletter, 1997, 21(1): 7-17. doi: 10.1111/j.1751-908X.1997.tb00527.x

    CrossRef Google Scholar

    [153] Blamart D, Rollion-Bard C, Meibom A, et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia Pertusa: Implications for biomineralization and paleo-pH[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12): 1-11.

    Google Scholar

    [154] Rollion-Bard C, Chaussidon M, France-Lanord C. pH control on oxygen isotopic composition of symbiotic corals[J]. Earth and Planetary Science Letters, 2003, 215(1-2): 275-288. doi: 10.1016/S0012-821X(03)00391-1

    CrossRef Google Scholar

    [155] Schmitt A K, Kasemann S, Meixner A, et al. Boron in central Andean ignimbrites: Implications for crustal boron cycles in an active continental margin[J]. Chemical Geology, 2002, 183(1-4): 333-347. doi: 10.1016/S0009-2541(01)00382-5

    CrossRef Google Scholar

    [156] Büttner S H, Kasemann S A. Deformation-controlled cation diffusion in tourmaline: A microanalytical study on trace elements and boron isotopes[J]. American Mineralogist, 2007, 92(11-12): 1862-1874. doi: 10.2138/am.2007.2567

    CrossRef Google Scholar

    [157] Drivenes K, Larsen R B, Müller A, et al. Late-magmatic immiscibility during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the Land's End granite, SW England[J]. Contributions to Mineralogy and Petrology, 2015, 169(6): 1-27.

    Google Scholar

    [158] Fitzsimons I C W, Harte B, Clark R M. SIMS stable isotope measurement: Counting statistics and analytical precision[J]. Mineralogical Magazine, 2000, 64(1): 59-83. doi: 10.1180/002646100549139

    CrossRef Google Scholar

    [159] Liu Y, Liu W G, Peng Z C, et al. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1264-1272. doi: 10.1016/j.gca.2008.11.034

    CrossRef Google Scholar

    [160] Marschall H R, Ludwig T. The low-boron contest: Minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry[J]. Mineralogy and Petrology, 2004, 81(3): 265-278.

    Google Scholar

    [161] Jochum K P, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2): 1-44.

    Google Scholar

    [162] Rosner M, Wiedenbeck M, Ludwig T. Composition-induced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses[J]. Geostandards and Geoanalytical Research, 2008, 32(1): 27-38. doi: 10.1111/j.1751-908X.2008.00875.x

    CrossRef Google Scholar

    [163] Gurenko A A, Kamenetsky V S. Boron isotopic compo-sition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 201-212. doi: 10.1016/j.epsl.2011.09.033

    CrossRef Google Scholar

    [164] Ludwig T, Marschall H R, von Strandmann P A, et al. A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities[J]. Mineralogical Magazine, 2011, 75(4): 2485-2494. doi: 10.1180/minmag.2011.075.4.2485

    CrossRef Google Scholar

    [165] Nakano T, Nakamura E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite[J]. Physics of the Earth and Planetary Interiors, 2001, 127(1-4): 233-252. doi: 10.1016/S0031-9201(01)00230-8

    CrossRef Google Scholar

    [166] McGregor J R, Grew E S, De Hoog J C M, et al. Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite source[J]. Geochimica et Cosmochimica Acta, 2013, 123: 261-283. doi: 10.1016/j.gca.2013.05.030

    CrossRef Google Scholar

    [167] 蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物微区原位同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623-640.

    Google Scholar

    Jiang S Y, Chen W, Zhao K D, et al. In situ microisotope analysis technology of minerals based on LA-(MC)-ICP-MS and its application[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623-640.

    Google Scholar

    [168] Lécuyer C, Grandjean P, Reynard B, et al. 11B/10B analy-sis of geological materials by ICP-MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater[J]. Chemical Geology, 2002, 186(1-2): 45-55. doi: 10.1016/S0009-2541(01)00425-9

    CrossRef Google Scholar

    [169] Le Roux P J, Shirey S B, Benton L, et al. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level[J]. Chemical Geology, 2004, 203(1-2): 123-138. doi: 10.1016/j.chemgeo.2003.09.006

    CrossRef Google Scholar

    [170] 侯可军, 李延河, 肖应凯, 等. LA-MC-ICP-MS硼同位素微区原位测试技术[J]. 科学通报, 2010, 55(22): 2207-2213.

    Google Scholar

    Hou K J, Li Y H, Xiao Y K, et al. In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(29): 3305-3311.

    Google Scholar

    [171] Zhao K D, Zhang L H, Palmer M R, et al. Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids[J]. Mineralium Deposita, 2021, 56(8): 1589-1608. doi: 10.1007/s00126-021-01045-4

    CrossRef Google Scholar

    [172] da Costa I R, Mourão C, Récio C, et al. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (central Portugal): Genetic implications of crystal-chemical and isotopic features[J]. Contributions to Mineralogy and Petrology, 2014, 167(4): 1-23.

    Google Scholar

    [173] 徐洁, 张贵宾, 李楠, 等. LA-MC-ICPMS电气石及白云母原位硼同位素测试方法及应用[J]. 岩石矿物学杂志, 2020, 39(3): 323-334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    CrossRef Google Scholar

    Xu J, Zhang G B, Li N, et al. LA-MC-ICPMS test method and application of in situ boron isotope of tourmaline and muscovite[J]. Acta Petrologica et Mineralogica, 2020, 39(3): 323-334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    CrossRef Google Scholar

    [174] Halama R, Konrad-Schmolke M, De Hoog J. Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid-rock interaction in white mica (Lago di Cignana, western Alps)[J]. Contributions to Mineralogy and Petrology, 2020, 175(3): 1-19.

    Google Scholar

    [175] Codeço M S, Weis P, Trumbull R B, et al. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation[J]. Economic Geology, 2019, 114(1): 153-163. doi: 10.5382/econgeo.2019.4625

    CrossRef Google Scholar

    [176] Liao X H, Hu Z C, Zhang W, et al. Isotopic analysis by laser ablation solution sampling MC-ICP-MS an example of boron[J]. Analytical Chemistry, 2021, 94(2): 1286-1293.

    Google Scholar

    [177] Thil F, Blamart D, Assailly C, et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: New improvements and application to a modern Porites coral[J]. Rapid Communications in Mass Spectrometry, 2016, 30(3): 359-371. doi: 10.1002/rcm.7448

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(5048) PDF downloads(358) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint