Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

XIE Manman, LIU Meimei, LING Yuan, SUN Qing. Analysis of Compound-specific Carbon Isotopic Composition of Polycyclic Aromatic Hydrocarbons by PTV-GC-IRMS[J]. Rock and Mineral Analysis, 2022, 41(6): 1060-1071. doi: 10.15898/j.cnki.11-2131/td.202205300107
Citation: XIE Manman, LIU Meimei, LING Yuan, SUN Qing. Analysis of Compound-specific Carbon Isotopic Composition of Polycyclic Aromatic Hydrocarbons by PTV-GC-IRMS[J]. Rock and Mineral Analysis, 2022, 41(6): 1060-1071. doi: 10.15898/j.cnki.11-2131/td.202205300107

Analysis of Compound-specific Carbon Isotopic Composition of Polycyclic Aromatic Hydrocarbons by PTV-GC-IRMS

More Information
  • BACKGROUND

    The carbon isotope ratio of PAHs is stable in the migration and transformation, which is an important traceability index and can be analyzed by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). For samples with low PAH content, meeting the detection limit of GC-IRMS is the premise for high-precision and accurate analysis of the carbon isotope ratio.

    OBJECTIVES

    To establish a PTV injection method with stronger intensity of PAHs, thereby improving the sensitivity of GC-IRMS carbon isotope analysis.

    METHODS

    Parameters of the programmed temperature vaporization (PTV) injector were optimized, including injection mode (constant temperature splitless, PTV splitless and solvent split), pressure process, sample transfer temperature and time, evaporation temperature and time, and splitless time.

    RESULTS

    The optimized parameters were PTV splitless, transfer temperature of 320℃, transfer time of 1.0min, injection pressure operating in a gradient of 40—60—70psi, evaporation temperature of 55℃, evaporation time of 2.5min, and splitless time of 1.5min. Pre-columns reduced the peak width and increased the peak intensity, especially high boiling point PAHs as benzo(a)pyrene, indeno(1, 2, 3-cd)pyrene, dibenzo(a, h)anthracene and benzo(g, h, i)perylene increased by 50%-100%. The precision of δ13C of 16 PAHs determined by the optimized PTV-GC-IRMS were within 0.5‰. The fractionation within the system can be corrected by two PAH references.

    CONCLUSIONS

    The optimized PTV-GC-IRMS can adjust the precision and accuracy of compound-specific carbon isotope analysis of PAHs at low concentrations, and expand the applicability of isotope tracing in environmental studies.

  • 加载中
  • [1] Yuan G L, Wu L J, Sun Y, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution, 2015, 203: 137-144. doi: 10.1016/j.envpol.2015.04.002

    CrossRef Google Scholar

    [2] 黄勇, 王安婷, 袁国礼, 等北京市表层土壤中PAHs含量特征及来源分析[J]. 岩矿测试, 2022, 41(1): 54-65.

    Google Scholar

    Huang Y, Wang A T, Yuan G L, et al. The content characteristics and source analysis of polycyclic aromatic hydrocarbon in topsoil of Beijing City[J]. Rock and Mineral Analysis, 2022, 41(1): 54-65.

    Google Scholar

    [3] 谢曼曼, 刘美美, 王淑贤, 等. 土壤中多环芳烃单体碳同位素分析的分离净化方法研究[J]. 岩矿测试, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131

    CrossRef Google Scholar

    Xie M M, Liu M M, Wang S X, et al. Study on separation of polycyclic aromatic hydrocarbons in soils for compound-specific carbon isotope analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131

    CrossRef Google Scholar

    [4] 母清林, 方杰, 邵君波, 等. 长江口及浙江近岸海域表层沉积物中多环芳烃分布、来源与风险评价[J]. 环境科学, 2015, 36(3): 839-846. doi: 10.13227/j.hjkx.2015.03.012

    CrossRef Google Scholar

    Mu Q L, Fang J, Shao J B, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Yangtze Estuary and Zhejiang coastal areas[J]. Environmental Science, 2015, 36(3): 839-846. doi: 10.13227/j.hjkx.2015.03.012

    CrossRef Google Scholar

    [5] Wang X C, Sun S, Ma H Q, et al. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China[J]. Marine Pollution Bulletin, 2006, 52(2): 129-138. doi: 10.1016/j.marpolbul.2005.08.010

    CrossRef Google Scholar

    [6] 张明, 唐访良, 吴志旭, 等. 千岛湖表层沉积物中多环芳烃污染特征及生态风险评价[J]. 中国环境科学, 2014, 34(1): 253-258.

    Google Scholar

    Zhang M, Tang F L, Wu Z X, et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Xin'anjiang Reservoir[J]. China Environmental Science, 2014, 34(1): 253-258.

    Google Scholar

    [7] O'Malley V P, Abrajano T A, Hellou J. Stable carbon isotopic apportionment of individual polycyclic aromatic hydrocarbons in St. John's Harbour, Newfoundland[J]. Environmental Science & Technology, 1996, 30(2): 634-639.

    Google Scholar

    [8] Garbarienè I, Garbaras A, Masalaite A, et al. Identifi-cation of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis[J]. Atmospheric Environment, 2020, 237: 117673. doi: 10.1016/j.atmosenv.2020.117673

    CrossRef Google Scholar

    [9] 白慧玲, 刘效峰, 宋翀芳. 太原市采暖期PM10中PAHs的碳同位素组成及源贡献率[J]. 中国环境科学, 2014, 34(1): 7-13.

    Google Scholar

    Bai H L, Liu X F, Song C F. Carbon isotope compositions and source apportionments of PAHs in PM10 of Taiyuan City during heating period[J]. China Environmental Science, 2014, 34(1): 7-13.

    Google Scholar

    [10] Okuda T, Kumata H, Naraoka H, et al. Origin of atmo-spheric polycyclic aromatic hydrocarbons (PAHs) in Chinese cities solved by compound-specific stable carbon isotopic analyses[J]. Organic Geochemistry, 2002, 33(12): 1737-1745. doi: 10.1016/S0146-6380(02)00180-8

    CrossRef Google Scholar

    [11] Mikolajczuk A, Przyk E P, Geypens B, et al. Analysis of polycyclic aromatic hydrocarbons extracted from air particulate matter using a temperature programmable injector coupled to GC-C-IRMS[J]. Isotopes in Environmental and Health Studies, 2010, 46(1): 2-12. doi: 10.1080/10256010903356920

    CrossRef Google Scholar

    [12] 苑金鹏, 钟宁宁, 吴水平. 土壤中多环芳烃的稳定碳同位素特征及其对污染源示踪意义[J]. 环境科学学报, 2005, 25(1): 81-85. doi: 10.13671/j.hjkxxb.2005.01.014

    CrossRef Google Scholar

    Yuan J P, Zhong N N, Wu S P. Stable carbon isotopic composition of polycyclic aromatic hydrocarbons in soil and its implications for the pollutants tracing[J]. Acta Scientiae Circumstantiae, 2005, 25(1): 81-85. doi: 10.13671/j.hjkxxb.2005.01.014

    CrossRef Google Scholar

    [13] 焦杏春, 王广, 叶传永, 等. 应用单体碳同位素分析技术探析农田土壤中多环芳烃的植物降解过程[J]. 岩矿测试, 2014, 33(6): 863-870. doi: 10.15898/j.cnki.11-2131/td.2014.06.017

    CrossRef Google Scholar

    Jiao X C, Wang G, Ye C Y, et al. Study on the phytodegradation of PAHs from farmland soil using compound-specific isotope analysis technique[J]. Rock and Mineral Analysis, 2014, 33(6): 863-870. doi: 10.15898/j.cnki.11-2131/td.2014.06.017

    CrossRef Google Scholar

    [14] Kim M, Kennicutt ⅡⅡ M C, Qian Y. Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica[J]. Marine Pollution Bulletin, 2006, 52(12): 1585-1590. doi: 10.1016/j.marpolbul.2006.03.024

    CrossRef Google Scholar

    [15] 陆燕, 王小云, 曹建平. 沉积物中16种多环芳烃单体碳同位素GC-C-IRMS测定[J]. 石油实验地质, 2018, 40(4): 532-537.

    Google Scholar

    Lu Y, Wang X Y, Cao J P. Compound-specific carbon stable isotope analysis of 16 polycyclic aromatic hydrocarbons in sediments by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)[J]. Petroleum Geology & Experiment, 2018, 40(4): 532-537.

    Google Scholar

    [16] Yan B, Abrajano T A, Bopp R F, et al. Combined applica-tion of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex[J]. Organic Geochemistry, 2006, 37(6): 674-687. doi: 10.1016/j.orggeochem.2006.01.013

    CrossRef Google Scholar

    [17] Lu Y, Li D, Wang X, et al. Assessment and implication of PAHs and compound-specific δ13C compositions in a dated marine sediment core from Daya Bay, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(8): 4527. doi: 10.3390/ijerph19084527

    CrossRef Google Scholar

    [18] McRae C, Snape C, Sun C, et al. Use of compound-specific stable isotope analysis to source anthropogenic natural gas-derived polycyclic aromatic hydrocarbons in a lagoon sediment[J]. Environmental Science & Technology, 2000, 34(22): 4684-4686.

    Google Scholar

    [19] 李琪, 李钜源, 窦月芹, 等. 淮河中下游沉积物PAHs的稳定碳同位素源解析[J]. 环境科学研究, 2012, 25(6): 672-677.

    Google Scholar

    Li Q, Li J Y, Dou Y Q, et al. Compound-specific stable carbon isotopic analysis on origins of PAHs in sediments from the middle and lower reaches of the Huaihe River[J]. Research of Environmental Sciences, 2012, 25(6): 672-677.

    Google Scholar

    [20] Hall J A, Barth J A C, Kalin R M. Routine analysis by high precision gas chromatography/mass selective detector/isotope ratio mass spectrometry to 0.1 parts per Mil[J]. Rapid Communications in Mass Spectrometry, 1999, 13(13): 1231-1236. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1231::AID-RCM579>3.0.CO;2-B

    CrossRef Google Scholar

    [21] Schmitt J, Glaser B, Zech W. Amount-dependent isotopic fractionation during compound-specific isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2003, 17(9): 970-977. doi: 10.1002/rcm.1009

    CrossRef Google Scholar

    [22] Glaser B, Amelung W. Determination of 13C natural abund-ance of amino acid enantiomers in soil: Methodological considerations and first results[J]. Rapid Communications in Mass Spectrometry, 2002, 16(9): 891-898. doi: 10.1002/rcm.650

    CrossRef Google Scholar

    [23] Blessing M, Jochmann M A, Haderlein S B, et al. Optimi-zation of a large-volume injection method for compound-specific isotope analysis of polycyclic aromatic compounds at trace concentrations[J]. Rapid Communications in Mass Spectrometry, 2015, 29(24): 2349-2360.

    Google Scholar

    [24] Mikolajczuk A, Geypens B, Berglund M, et al. Use of a temperature-programmable injector coupled to gas chromatography-combustion-isotope ratio mass spectrometry for compound-specific carbon isotopic analysis of polycyclic aromatic hydrocarbons[J]. Rapid Communication of Mass Spectrometry, 2009, 23(16): 2421-2427.

    Google Scholar

    [25] Qiao Y, Lyu G, Song C, et al. Optimization of programmed temperature vaporization injection for determination of polycyclic aromatic hydrocarbons from diesel combustion process[J]. Energies, 2019, 12(24): 4791.

    Google Scholar

    [26] Maricq M M. Chemical characterization of particulate emissions from diesel engines: A reviews[J]. Journal of Aerosol Science, 2007, 38(11): 1079-1118.

    Google Scholar

    [27] Poster D L, Schantz M M, Sander L C, et al. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: A critical review of gas chromatographic (GC) methods[J]. Analytical and Bioanalytical Chemistry, 2006, 386(4): 859-881.

    Google Scholar

    [28] Zwank L, Berg M, Schmidt T C, et al. Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range[J]. Analytical Chemistry, 2003, 75(20): 5575-5583.

    Google Scholar

    [29] de Souza C V, Corrêa S M. Polycyclic aromatic hydrocarbon emissions in diesel exhaust using gas chromatography-mass spectrometry with programmed temperature vaporization and large volume injection[J]. Atmospheric Environment, 2015, 103: 222-230.

    Google Scholar

    [30] Pavón J L P, del Nogal Sánchez M, Laespada M E F, et al. Determination of aromatic and polycyclic aromatic hydrocarbons in gasoline using programmed temperature vaporization-gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2): 196-202.

    Google Scholar

    [31] Bruno P, Caselli M, de Gennaro G, et al. Determination of polycyclic aromatic hydrocarbons (PAHs) in particulate matter collected with low volume samplers[J]. Talanta, 2007, 72(4): 1357-1361.

    Google Scholar

    [32] Crimmins B S, Baker J E. Improved GC/MS methods for measuring hourly PAH and nitro-PAH concentrations in urban particulate matter[J]. Atmospheric Environment, 2006, 40(35): 6764-6779.

    Google Scholar

    [33] Drabova L, Pulkrabova J, Kalachova K, et al. Rapid deter-mination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry[J]. Talanta, 2012, 100: 207-216.

    Google Scholar

    [34] Yusà V, Quintas G, Pardo O, et al. Determination of PAHs in airborne particles by accelerated solvent extraction and large-volume injection-gas chromatography-mass spectrometry[J]. Talanta, 2006, 69(4): 807-815.

    Google Scholar

    [35] 钟志铭, 黄子敬, 符靖雯. QuEChERS结合PTV-GC-MS/MS测定食用菌中多种农药残留[J]. 分析试验室, 2016, 35(6): 648-653.

    Google Scholar

    Zhong Z M, Huang Z J, Fu J W. Determination of pesticide residues in edible mushrooms by QuEChERS-PTV-gas chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(6): 648-653.

    Google Scholar

    [36] García-Rodríguez D, Carro-Díaz A M, Lorenzo-Ferreira R A, et al. Determination of pesticides in seaweeds by pressurized liquid extraction and programmed temperature vaporization-based large volume injection-gas chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(17): 2940-2949.

    Google Scholar

    [37] 张弛, 宋莹, 潘家荣, 等. 气相色谱-质谱大体积进样法测定果汁中90种农药残留[J]. 分析化学, 2015, 43(8): 1154-1161.

    Google Scholar

    Zhang C, Song Y, Pan J R, et al. Determination of 90 pesticide residues in fruit juices using QuEChERS cleanup and programmable temperature vaporizer-based large volume injection by gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(8): 1154-1161.

    Google Scholar

    [38] 袁河, 赵振宇, 吴建霞, 等. 程序升温汽化-气相色谱-三重四极杆串联质谱法(PTV-GC-MS/MS)同时测定小麦中的109种农药残留[J]. 酿酒科技, 2016(6): 120-128.

    Google Scholar

    Yuan H, Zhao Z Y, Wu J X, et al. Simultaneous determination of 109 pesticide residues in wheat by PTV-GC-MS/MS[J]. Liquor-making Science & Technology, 2016(6): 120-128.

    Google Scholar

    [39] 黄子敬, 陈孟君, 符靖雯, 等. PTV-GC-MS/MS及UPLC-MS/MS测定水产品中多种农兽药残留[J]. 化学研究与应用, 2018, 30(8): 1376-1387.

    Google Scholar

    Huang Z J, Chen M J, Fu W J, et al. Multiresidue determination of pesticide and veterinary drugs in aquatic products by PTV-GC-MS/MS and UPLC-MS/MS[J]. Chemical Research and Application, 2018, 30(8): 1376-1387.

    Google Scholar

    [40] 楼小华, 高川川, 朱文静, 等. PTV-GC-MS/MS同时测定烟草中202种农药残留[J]. 烟草科技, 2013(8): 45-57.

    Google Scholar

    Lou X H, Gao C C, Zhu W J, et al. Simultaneous determination of 202 pesticide residues in tobacco by PTV-gas chromatography-tandem mass spectrometry[J]. Tobacco Chemistry, 2013(8): 45-57.

    Google Scholar

    [41] Júnior E F, Caldas E D. Simultaneous determination of drugs and pesticides in postmortem blood using dispersive solid-phase extraction and large volume injection-programmed temperature vaporization-gas chromatography-mass spectrometry[J]. Forensic Science International, 2018, 290: 318-326.

    Google Scholar

    [42] Dugheri S, Mucci N, Pompilio I, et al. Determination of airborne formaldehyde and ten other carbonyl pollutants using programmed temperature vaporization-large volume injection-gas chromatography[J]. Chinese Journal of Chromatography, 2018, 36(12): 1311-1322.

    Google Scholar

    [43] Dugheri S, Marrubini G, Speltini A, et al. Fully automated determination of trimellitic anhydride in saturated polyester resins using programmed temperature vaporization-large volume injection-gas chromatography previous aqueous derivatization with triethyloxonium tetrafluoroborate[J]. Chromatographia, 2020, 83(5): 601-613.

    Google Scholar

    [44] Combs M, Noe O. Use of a PTV injector to achieve inverse-large volume injection: Injection of volatile analytes in a semi-volatile solvent[J]. Journal of Separation Science, 2001, 24(4): 291-296.

    Google Scholar

    [45] Zech M, Glaser B. Improved compound-specific δ13C analysis of n-alkanes for application in palaeo-environmental studies[J]. Rapid Communications in Mass Spectrometry, 2008, 22(2): 135-142.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2058) PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint