Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 2
Article Contents

ZHAO Hengqian, CHANG Renqiang, JIN Qian, WU Yanhua, WANG Xuefei, MA Huichun, LI Meiyu, FU Hancong. Spatial Analysis and Risk Assessment of Soil Heavy Metal Pollution in the Xishimen Iron Mining Area of Hebei Province[J]. Rock and Mineral Analysis, 2023, 42(2): 371-382. doi: 10.15898/j.cnki.11-2131/td.202203290066
Citation: ZHAO Hengqian, CHANG Renqiang, JIN Qian, WU Yanhua, WANG Xuefei, MA Huichun, LI Meiyu, FU Hancong. Spatial Analysis and Risk Assessment of Soil Heavy Metal Pollution in the Xishimen Iron Mining Area of Hebei Province[J]. Rock and Mineral Analysis, 2023, 42(2): 371-382. doi: 10.15898/j.cnki.11-2131/td.202203290066

Spatial Analysis and Risk Assessment of Soil Heavy Metal Pollution in the Xishimen Iron Mining Area of Hebei Province

More Information
  • BACKGROUND

    Heavy metal pollution in the soil of mining areas is a serious threat to the ecological environment and the health of surrounding residents, and it is of great significance to effectively supervise it. The Xishimen iron deposit in Hebei Province is a large magnetite deposit in the Hanxing area. Comprehensive research on soil heavy metal pollution in this mining area is urgently needed.

    OBJECTIVES

    To evaluate soil heavy metal pollution in the Xishimen iron mining area in Hebei Province.

    METHODS

    The No.1 mining area of the Xishimen iron deposit was selected as the research object. ICP-MS was used to determine the heavy metal content. The exceedance rate, pollution sources and spatial distribution characteristics of heavy metals were obtained by descriptive statistical analysis, multivariate statistical analysis and spatial interpolation analysis, and the pollution risk was evaluated by combining the single factor pollution index, Nemero comprehensive pollution index and potential ecological hazard index.

    RESULTS

    Descriptive statistical analysis showed that the exceedance rate of Co in the mining area was 75.83%, indicating heavy pollution, while the exceedance rates of Cu, Cd and As were 14.70%, 21.40% and 13.29%, indicating moderate to light pollution. The exceedance rates of Cr, Ni, Zn, Pb and Hg were less than 5%, which were light pollution. The multivariate statistical analysis showed that Cr, Ni, Zn, Cd, As and Pb were from the natural weathering environmental pollution in the mineralized area, and Co and Cu were from the anthropogenic environmental pollution caused by mining production and fertilizer use. Hg came from the local pollution caused by human factors. Spatial interpolation analysis showed that the nine heavy metals had a high distribution in the open pit mining area on both sides of the Mahui River and a low distribution in the rivers and residential areas. The Nemero comprehensive pollution index of heavy metals in the study area was 13.49, and the comprehensive ecological risk index was 55.50.

    CONCLUSIONS

    The results indicate that there is Hg, Co, and Cu pollution caused by human factors in the mining area, which needs to be addressed. The heavy metal pollution in this area is serious but the ecological risk is still in a controllable range.

  • 加载中
  • [1] 苏辉跃, 刘江川, 王璐, 等. 城乡过渡区土壤-蔬菜中重金属耦合分异特征及形成机理解析[J]. 生态与农村环境学报, 2022, 38(2): 184-193.

    Google Scholar

    Su H Y, Liu J C, Wang L, et al. Analysis of heavy metal coupling differentiation characteristics and formation mechanism in soil-vegetable in urban-rural transition area[J]. Journal of Ecology and Rural Environment, 2022, 38(2): 184-193.

    Google Scholar

    [2] Pekey H, Doǧan G. Application of positive matrix factori-sation for the source apportionment of heavy metals in sediments: A comparison with a previous factor analysis study[J]. Microchemical Journal, 2013(106): 233-237.

    Google Scholar

    [3] 姚春卉, 宁曙光, 武波, 等. 青岛市新兴工业园区土壤重金属污染特征[J]. 中国科技论文, 2020, 15(9): 1050-1057. doi: 10.3969/j.issn.2095-2783.2020.09.013

    CrossRef Google Scholar

    Yao C H, Ning S G, Wu B, et al. Characteristics of heavy metal pollution in soil of Qingdao Xinxing Industrial Park[J]. China Science and Technology Paper, 2020, 15(9): 1050-1057. doi: 10.3969/j.issn.2095-2783.2020.09.013

    CrossRef Google Scholar

    [4] Hadzi G Y, Ayoko G A, Essumang D K, et al. Contami-nation impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana[J]. Environmental Geochemistry and Health, 2019, 41(2): 2821-2843.

    Google Scholar

    [5] Ren Z Q, Xiao R, Zhang Z H, et al. Risk assessment and source identification of heavy metals in agricultural soil: A case study in the coastal city of Zhejiang Province, China[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(11-12): 2109-2118. doi: 10.1007/s00477-019-01741-8

    CrossRef Google Scholar

    [6] Kolo M T, Khandaker M U, Amin Y M, et al. Assessment of health risk due to the exposure of heavy metals in soil around Mega coal-fired cement factory in Nigeria[J]. Results in Physics, 2018, 11: 755-762. doi: 10.1016/j.rinp.2018.10.003

    CrossRef Google Scholar

    [7] Abrahams P W. Soils: Their implications to human health[J]. Science of the Total Environment, 2002, 291(1-3): 1-32. doi: 10.1016/S0048-9697(01)01102-0

    CrossRef Google Scholar

    [8] Seifeddine S, Ouahida Z, Ferid D, et al. Assessment of heavy metal pollution in urban and peri-urban soil of Setif City (High Plains, eastern Algeria)[J]. Environmental Monitoring and Assessment, 2022, 194(2): 1-17.

    Google Scholar

    [9] 郭晗, 孙英君, 王绪璐, 等. 县域城市土壤重金属空间分布特征及来源解析[J]. 环境科学学报, 2022, 42(1): 287-297.

    Google Scholar

    Guo H, Sun Y J, Wang X L, et al. Spatial distribution characteristics and source analysis of soil heavy metals in county cities[J]. Journal of Environmental Science, 2022, 42(1): 287-297.

    Google Scholar

    [10] 冯乾伟, 王兵, 马先杰, 等. 黔西北典型铅锌矿区土壤重金属污染特征及其来源分析[J]. 矿物岩石地球化学通报, 2020, 39(4): 863-870. doi: 10.19658/j.issn.1007-2802.2020.39.051

    CrossRef Google Scholar

    Feng Q W, Wang B, Ma X J, et al. Characteristics of soil heavy metal contamination in typical Pb-Zn mining areas in northwest Qianxi and its source analysis[J]. Mineral and Rock Geochemistry Bulletin, 2020, 39(4): 863-870. doi: 10.19658/j.issn.1007-2802.2020.39.051

    CrossRef Google Scholar

    [11] 王锐, 邓海, 贾中民, 等. 汞矿区周边土壤重金属空间分布特征、污染与生态风险评价[J]. 环境科学, 2021, 42(6): 3018-3027. doi: 10.13227/j.hjkx.202010140

    CrossRef Google Scholar

    Wang R, Deng H, Jia Z M, et al. Spatial distribution characteristics of heavy metals in soils around mercury mining areas, pollution and ecological risk assessment[J]. Environmental Science, 2021, 42(6): 3018-3027. doi: 10.13227/j.hjkx.202010140

    CrossRef Google Scholar

    [12] 迟晓杰, 谷海红, 李富平, 等. 重金属污染土壤植物修复效果评价方法——高光谱遥感[J]. 金属矿山, 2019(1): 16-23.

    Google Scholar

    Chi X J, Gu H H, Li F P, et al. Evaluation method of phytoremediation effect of heavy metal contaminated soil by hyperspectral remote sensing[J]. Metal Mining, 2019(1): 16-23.

    Google Scholar

    [13] 赵恒谦, 张文博, 朱孝鑫, 等. 煤炭矿区植被冠层光谱土地复垦敏感性分析[J]. 光谱学与光谱分析, 2019, 39(6): 1858-1863.

    Google Scholar

    Zhao H Q, Zhang W B, Zhu X X, et al. Sensitivity analysis of vegetation canopy spectra for land reclamation in coal mining areas[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1858-1863.

    Google Scholar

    [14] 刘恒凤, 张吉雄, 周楠, 等. 矸石基胶结充填材料重金属浸出及其固化机制[J]. 中国矿业大学学报, 2021, 50(3): 523-531.

    Google Scholar

    Liu H F, Zhang J X, Zhou N, et al. Heavy metal leaching from gangue-based cemented filling materials and its curing mechanism[J]. Journal of China University of Mining and Technology, 2021, 50(3): 523-531.

    Google Scholar

    [15] 孙厚云, 吴丁丁, 毛启贵, 等. 新疆东天山某铜矿区土壤重金属污染与生态风险评价[J]. 环境化学, 2019, 38(12): 2690-2699.

    Google Scholar

    Sun H Y, Wu D D, Mao Q G, et al. Evaluation of soil heavy metal pollution and ecological risk in a copper mining area in East Tianshan, Xinjiang[J]. Environmental Chemistry, 2019, 38(12): 2690-2699.

    Google Scholar

    [16] 段友春, 梁兴光, 臧浩, 等. 日照市典型农用地土壤重金属来源分析及环境质量评价[J]. 环境污染与防治, 2020, 42(11): 1410-1414, 1429.

    Google Scholar

    Duan Y C, Liang X G, Zang H, et al. Analysis of heavy metal sources and environmental quality evaluation of typical agricultural land in Rizhao[J]. Environmental Pollution and Prevention, 2020, 42(11): 1410-1414, 1429.

    Google Scholar

    [17] 董霁红, 卞正富, 于敏, 等. 矿区充填复垦土壤重金属分布特征研究[J]. 中国矿业大学学报, 2010, 39(3): 335-341.

    Google Scholar

    Dong J H, Bian Z F, Yu M, et al. Study on the distribution characteristics of heavy metals in mine reclamation soils[J]. Journal of China University of Mining and Technology, 2010, 39(3): 335-341.

    Google Scholar

    [18] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909-916.

    Google Scholar

    Chen J L, Li R Y, Xie X J, et al. Distribution characteristics of heavy metals in greenland soils of Nanjing and its pollution evaluation[J]. Environmental Science, 2021, 42(2): 909-916.

    Google Scholar

    [19] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6): 2884-2892.

    Google Scholar

    Zhou Y, Chen Q, Deng S P, et al. Spatial principal component analysis and ecological risk evaluation of heavy metals in agricultural soils of a Pb-Zn mining area in southwest China[J]. Environmental Science, 2018, 39(6): 2884-2892.

    Google Scholar

    [20] Lin Q, Liu E, Zhang E, et al. Spatial distribution, contami-nation and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China[J]. Catena, 2016, 145: 193-203.

    Google Scholar

    [21] Qin F, Ji H B, Li Q, et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River[J]. Journal of Geochemical Exploration, 2014, 138: 33-49.

    Google Scholar

    [22] Hakanson L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.

    Google Scholar

    [23] 张锂, 韩国才, 陈慧, 等. 黄土高原煤矿区煤矸石中重金属对土壤污染的研究[J]. 煤炭学报, 2008(10): 1141-1146.

    Google Scholar

    Zhang L, Han G C, Chen H, et al. Study on soil contamination by heavy metals in coal gangue in the Loess Plateau coal mining area[J]. Journal of Coal, 2008(10): 1141-1146.

    Google Scholar

    [24] Hao J L, Han Z Z, Wang C Z, et al. Distribution of heavy metals in the topsoil of the Jining mining area[J]. Mining Science and Technology, 2010, 20(3): 395-399.

    Google Scholar

    [25] Guo G H, Wu F C, Xie F Z, et al. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China[J]. Journal of Environmental Sciences, 2012, 24(3): 410-418.

    Google Scholar

    [26] 黄石德. 铁矿废弃地不同修复模式土壤重金属污染特征及评价[J]. 防护林科技, 2019(3): 5-7.

    Google Scholar

    Huang S D. Characteristics and evaluation of heavy metal pollution in soils of iron ore waste sites with different remediation modes[J]. Protective Forest Technology, 2019(3): 5-7.

    Google Scholar

    [27] 葛晓颖, 欧阳竹, 杨林生, 等. 环渤海地区土壤重金属富集状况及来源分析[J]. 环境科学学报, 2019, 39(6): 1979-1988.

    Google Scholar

    Ge X Y, Ouyang Z, Yang L S, et al. Analysis of the enrichment status and sources of heavy metals in soils in the Bohai Sea Rim[J]. Journal of Environmental Science, 2019, 39(6): 1979-1988.

    Google Scholar

    [28] 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 2484-2500.

    Google Scholar

    Zhao J X, Li G M, Qin K Z, et al. Research progress and problem analysis of cobalt-rich deposits[J]. Science Bulletin, 2019, 64(24): 2484-2500.

    Google Scholar

    [29] 张晓薇, 王恩德, 安婧. 辽阳弓长岭铁矿区重金属污染评价[J]. 生态学杂志, 2018, 37(6): 1789-1796.

    Google Scholar

    Zhang X W, Wang E D, An J. Evaluation of heavy metal pollution in the Gongchangling iron ore mining area of Liaoyang[J]. Journal of Ecology, 2018, 37(6): 1789-1796.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(5)

Article Metrics

Article views(1317) PDF downloads(85) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint