Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 2
Article Contents

YANG Rong, GU Tiexin, PAN Hanjiang, LIU Mei, ZHAO Kai. Redevelopment of Oolong Tea and Green Tea Component Analysis Reference Materials[J]. Rock and Mineral Analysis, 2023, 42(2): 420-431. doi: 10.15898/j.cnki.11-2131/td.202202180025
Citation: YANG Rong, GU Tiexin, PAN Hanjiang, LIU Mei, ZHAO Kai. Redevelopment of Oolong Tea and Green Tea Component Analysis Reference Materials[J]. Rock and Mineral Analysis, 2023, 42(2): 420-431. doi: 10.15898/j.cnki.11-2131/td.202202180025

Redevelopment of Oolong Tea and Green Tea Component Analysis Reference Materials

More Information
  • BACKGROUND

    With the comprehensive development of the agricultural ecological geological survey and the improvement of people's attention to the ecological environment in our country, the demand for biogeochemical reference materials in biological analysis food analysis and agricultural products analysis is increasing. The existing biogeochemical reference materials are in short supply, and there is an urgent need to develop new reference materials. With the full deployment and development of agro-ecological geological surveys, the demand for biogeochemical reference materials is increasing.

    OBJECTIVES

    To reproduce tea composition reference materials (GBW10016a & GBW10052a) to take the place of old tea composition reference materials (GBW10016 & GBW10052).

    METHODS

    According to the development needs of geological surveys, the focus of this paper is on the preparation of two tea reference materials, GBW10016a and GBW10052a. The progress includes sampling, processing and preparation, particle size test, uniformity test, stability test, content test, and calculation of identification value and uncertainty.

    In the sampling process, the sample collection locations are Wuyishan City, Fujian Province and Wuyuan County, Shangrao City, Jiangxi Province. The candidates are oolong tea and green tea. The tea samples both weigh 400kg.

    In the processing and preparation, the samples were cleaned, freeze-dried, heated and dried, ball milled, screened, sub-packed and inactivated. In the particle size test, the BT-9000s laser particle size distributor was used to test the particle size of the samples. The particle size of GBW10016a & GBW10052a centrally distributed in the range of 75μm to 200μm, and the cumulative distribution content reached 98% in the range of 175μm to 200μm.

    In the uniformity testing process, 15 bottles of samples were randomly selected for analysis of more than 30 elements. The analysis results show that the relative standard deviation of the elements is less than 7%, the measured values F in the variance test are less than the critical value F. It shows that the uniformity of the samples is acceptable.

    In the stability testing process, the short-term and long- term stability of the samples are good according to the analysis and testing in different time periods.

    In the content testing process, a total of 61 indicators were analyzed by accurate and reliable methods such as inductively coupled plasma-mass spectrometry/optical emission spectrometry (ICP-MS/OES) and atomic fluorescence spectrometry (AFS) in multiple laboratories.

    In the process of calculation of identification value and uncertainty, the Grubbs algorithm and the Dixon algorithm were carried out to check and exclude individual out-group data in the group at the first step. The Cochrane algorithm was used to carry out precision testing at the second step. The Shapiro-Wilk algorithm was used to complete the data normality test.

    The whole preparation process of the tea reference materials follow three specifications: Technical Norm of Primary Reference Materials (JJG 1006—1994), General and Statistical Principles for Characterization of Reference Materials (JJF 1343—2012) and The Production of Reference Materials for Geoanalysis(JJF 1646—2017).

    RESULTS

    GBW10016a (GSB-7a) and GBW10052a (GSB-30a) tea reference materials are successfully reproduced, and have been approved as national first-class reference materials. The GBW10016a (GSB-7a) and GBW10052a (GSB-30a) are characterized by strong representativeness, multi-component planting, and accurate and reliable customization results. A total of 61 indicators are involved in this reproduction: Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, N, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, Y, Yb, Zn. GBW10016a (GSB-7a) contains 54 elements with certified values and uncertainties, and 3 elements with reference values. GBW10052a (GSB-30a) contains 57 elements with certified values and uncertainties, and 3 elements with reference values. For GBW10016a (GSB-7a), Ag and Sn are added, and Ge and Tl are upgraded from the reference values of the original batch (GBW10016) to the certified values. For GBW10052a, Al, Ag, Cl, I, N, S, Sb, Sc, Si and Sn are upgraded from the reference values of the original batch (GBW10052) to the certified values. Due to the current level of analysis technology and objective conditions, the elements of Hf and Nb cannot be given reference values.

    CONCLUSIONS

    The reference materials effectively support the needs of geochemical investigation and evaluation of the agricultural ecological environment, analysis of biological samples and food and agricultural products. With the development of ecological environmental research and food safety and hygiene inspection, people pay more and more attention to the characteristic elements, and the requirements are increasing. Problems still exists in the analysis of biological samples, such as discrete analysis results of the same method between laboratories and systematic errors among the main analysis methods of individual elements. There are technical difficulties in the analysis of some elements. Analysis and testing technology needs to be continuously improved to cope with the characteristics of a special biological sample matrix, low composition content and difficult testing.

  • 加载中
  • [1] 孙德忠, 安子怡, 许春雪, 等. 四种前处理方法对电感耦合等离子体质谱测定植物样品中27种微量元素的影响[J]. 岩矿测试, 2012, 31(6): 961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008

    CrossRef Google Scholar

    Sun D Z, An Z Y, Xu C X, et al. Effects of four pretreatment methods on determination of 27 trace elements in plant samples by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6): 961-966. doi: 10.3969/j.issn.0254-5357.2012.06.008

    CrossRef Google Scholar

    [2] 王巧云, 何欣, 王锐. 国内外标准物质发展现状[J]. 化学试剂, 2014(4): 289-296.

    Google Scholar

    Wang Q Y, He X, Wang R. Development of reference materials in China and abroad[J]. Chemical Reagents, 2014(4): 289-296.

    Google Scholar

    [3] 刘素丽, 王宏伟, 赵梅, 等. 食品中基体标准物质研究进展[J]. 食品安全质量检测学报, 2019, 10(1): 8-13. doi: 10.3969/j.issn.2095-0381.2019.01.002

    CrossRef Google Scholar

    Liu S L, Wang H W, Zhao M, et al. Research progress of matrix reference materials for food[J]. Journal of Food Safety and Quality, 2019, 10(1): 8-13. doi: 10.3969/j.issn.2095-0381.2019.01.002

    CrossRef Google Scholar

    [4] Zhu Y, Narukawa T, Inagaki K, et al. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves[J]. Analytical Sciences, 2011, 27(11): 1149-1155. doi: 10.2116/analsci.27.1149

    CrossRef Google Scholar

    [5] Mori I, Ukachi M, Nagano K, et al. Characterization of NIES CRM No. 23 Tea Leaves Ⅱ for the determination of multielements[J]. Analytical & Bioanalytical Chemistry, 2010(397): 463-470.

    Google Scholar

    [6] 尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试, 2009, 28(1): 37-52. doi: 10.3969/j.issn.0254-5357.2009.01.009

    CrossRef Google Scholar

    Yin M. Development status and trend of geological analysis and testing technology in China[J]. Rock and Mineral Analysis, 2009, 28(1): 37-52. doi: 10.3969/j.issn.0254-5357.2009.01.009

    CrossRef Google Scholar

    [7] 卢晓华, 纪洁. 我国食品分析用标准物质现状分析[J]. 中国计量, 2007(4): 78-79. doi: 10.3969/j.issn.1006-9364.2007.04.043

    CrossRef Google Scholar

    Lu X H, Ji J. Analysis on the status quo of reference substances for food analysis in my country[J]. China Metrology, 2007(4): 78-79. doi: 10.3969/j.issn.1006-9364.2007.04.043

    CrossRef Google Scholar

    [8] 邵鸿飞, 冀克俭, 刘元俊, 等. 环境标准物质的应用及其发展中存在的问题[J]. 化学分析计量, 2008(3): 68-69. doi: 10.3969/j.issn.1008-6145.2008.03.024

    CrossRef Google Scholar

    Shao H F, Ji K J, Liu Y J, et al. Application of environmental standard substances and problems existing in its development[J]. Chemical Analysis Metrology, 2008(3): 68-69. doi: 10.3969/j.issn.1008-6145.2008.03.024

    CrossRef Google Scholar

    [9] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716. doi: 10.3321/j.issn:1006-3021.2009.06.003

    CrossRef Google Scholar

    Xie X J, Ren T X, Xi X H, et al. The implementation of the Regional Geochemistry-National Recon-Naissance Program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6): 700-716. doi: 10.3321/j.issn:1006-3021.2009.06.003

    CrossRef Google Scholar

    [10] 孙威江, 危赛明. 中国无公害茶叶发展的现状与趋势[J]. 中国茶叶, 2001(5): 24-25. doi: 10.3969/j.issn.1000-3150.2001.05.012

    CrossRef Google Scholar

    Sun W J, Wei S M. Current situation and trend of China's pollution-free tea development[J]. Chinese Tea, 2001(5): 24-25. doi: 10.3969/j.issn.1000-3150.2001.05.012

    CrossRef Google Scholar

    [11] 王毅民, 王晓红, 高玉淑. 地质标准物质粒度测量与表征的现代方法[J]. 地质通报, 2009, 28(1): 137-145. doi: 10.3969/j.issn.1671-2552.2009.01.017

    CrossRef Google Scholar

    Wang W M, Wang X H, Gao Y S, et al. Modern methods for particle size measurement and characterization of geological reference materials[J]. Geological Bulletin of China, 2009, 28(1): 137-145. doi: 10.3969/j.issn.1671-2552.2009.01.017

    CrossRef Google Scholar

    [12] 杨珍娥, 苏健, 孙乐雨, 等. 关于激光粒度仪和标准筛分试验的对比研究[J]. 煤炭加工与综合利用, 2017(S1): 62-64, 80.

    Google Scholar

    Yang Z E, Su J, Sun L Y, et al. Comparative study on laser particle size analyzer and standard screening test[J]. Coal Processing and Comprehensive Utilization, 2017(S1): 62-64.

    Google Scholar

    [13] 邵鸿飞, 柴娟, 黄辉. 粒度分析及粒度标准物质研究进展[J]. 化学分析计量, 2012, 21(2): 99-101. doi: 10.3969/j.issn.1008-6145.2012.02.031

    CrossRef Google Scholar

    Shao H F, Chai J, Huang H. Research progress of particle size analysis and particle size reference materials[J]. Chemical Analysis and Metrology, 2012, 21(2): 99-101. doi: 10.3969/j.issn.1008-6145.2012.02.031

    CrossRef Google Scholar

    [14] 王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010, 29(6): 735-741. doi: 10.3969/j.issn.0254-5357.2010.06.023

    CrossRef Google Scholar

    Wang X H, Wang Y M, Gao Y S, et al. Review and discussion on the homogeneity test method of geological reference material[J]. Rock and Mineral Analysis, 2010, 29(6): 735-741. doi: 10.3969/j.issn.0254-5357.2010.06.023

    CrossRef Google Scholar

    [15] 雷霆, 赵士英. 食品标准物质的均匀性检验[J]. 科研与设计, 1992(1): 29-32.

    Google Scholar

    Lei T, Zhao S Y. Homogeneity inspection of food standard materials[J]. Research and Design, 1992(1): 29-32.

    Google Scholar

    [16] 关铁权. 标准物质均匀性可靠性的探讨[J]. 计量与测试技术, 1994(6): 23-26.

    Google Scholar

    Guan T Q. Discussion on reliability of standard material homogeneity[J]. Metrology and Testing Technology, 1994(6): 23-26.

    Google Scholar

    [17] 赵海, 李灵凤. 电热板酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中的硼、砷、硫[J]. 中国资源综合利用, 2020, 38(8): 19-21.

    Google Scholar

    Zhao H, Li L F. Simultaneous determination of boron, arsenic and sulfur in geological samples by hot plate acid-soluble-inductively coupled plasma atomic emission spectrometry[J]. Comprehensive Utilization of Resources in China, 2020, 38(8): 19-21.

    Google Scholar

    [18] 但德忠, 冷庚, 皇甫鑫. 环境样品分析[J]. 分析试验室, 2010, 29(7): 79-122.

    Google Scholar

    Dan D Z, Leng G, Huang F X. Environmental sample analysis[J]. Chinese Journal of Analysis Laboratory, 2010, 29(7): 79-122.

    Google Scholar

    [19] 罗立强, 吴晓军. 现代地质与地球化学分析研究进展[M]. 北京: 地质出版社, 2014: 417.

    Google Scholar

    Luo L Q, Wu X J. Advances in geoanalysis[M]. Beijing: Geological Publishing House, 2014: 417.

    Google Scholar

    [20] 习小山. 浅析岩矿分析与测试技术在当前阶段的应用与发展趋势[J]. 中国新技术新产品, 2016(21): 174-175.

    Google Scholar

    Xi X S. The application and development trend of rock mine analysis and testing technology in the current stage[J]. New Technology & New Products of China, 2016(21): 174-175.

    Google Scholar

    [21] 汪艳芸, 邓晃. 岩矿分析技术发展方向及其在实物地质资料中的应用浅析[J]. 中国矿业, 2017(2): 374-376.

    Google Scholar

    Wang Y Y, Deng H. The development direction of rock and mineral analysis technology and its application in physical geological data[J]. China Mining, 2017(2): 374-376.

    Google Scholar

    [22] 冯永明, 邢应香, 刘洪青, 等. 微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J]. 岩矿测试, 2014, 33(1): 34-39.

    Google Scholar

    Feng Y M, Xing Y X, Liu H Q, et al. Determination of trace selenium in biological samples by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(1): 34-39.

    Google Scholar

    [23] 刘文政, 贾亚琪, 李磊. 微波消解-电感耦合等离子体质谱法同时测定茶叶中的10种金属元素[J]. 微量元素与健康研究, 2020(27): 50-53.

    Google Scholar

    Liu W Z, Jia Y Q, Li L. Simultaneous determination of 10 metal elements in tea by microwave digestion-inductively coupled plasma mass spectrometry[J]. Study on Trace Elements and Health, 2020(27): 50-53.

    Google Scholar

    [24] 张丽华, 肖国平, 宋游, 等. 微波技术在生物样品预处理中的应用[J]. 现代科学仪器, 2004(5): 37-40.

    Google Scholar

    Zhang L H, Xiao G P, Song Y, et al. Application of microwave technology in biological sample pretreatment[J]. Modern Scientific Instruments, 2004(5): 37-40.

    Google Scholar

    [25] 全浩, 韩永志. 标准物质及其应用技术(第二版)[M]. 北京: 中国标准出版社, 2003: 225-230.

    Google Scholar

    Quan H, Han Y Z. Reference materials and their applied technology (The 2nd Edition)[M]. Beijing: China Standard Publishing House, 2003: 225-230.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(7)

Article Metrics

Article views(1753) PDF downloads(157) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint