Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 1
Article Contents

LU Qianshu, LIU Zhenchao, ZENG Shixiu, SONG Anbang, LI Zhixiong, ZHANG Song, ZHANG Shuai, LAN Mingguo. Determination of Hydrolysable Nitrogen in Soil Samples by Alkaline Hydrolysis Diffusion Separation Acid-base Titration Based on a Polypropylene Diffusion Dish[J]. Rock and Mineral Analysis, 2023, 42(1): 156-166. doi: 10.15898/j.cnki.11-2131/td.202201180013
Citation: LU Qianshu, LIU Zhenchao, ZENG Shixiu, SONG Anbang, LI Zhixiong, ZHANG Song, ZHANG Shuai, LAN Mingguo. Determination of Hydrolysable Nitrogen in Soil Samples by Alkaline Hydrolysis Diffusion Separation Acid-base Titration Based on a Polypropylene Diffusion Dish[J]. Rock and Mineral Analysis, 2023, 42(1): 156-166. doi: 10.15898/j.cnki.11-2131/td.202201180013

Determination of Hydrolysable Nitrogen in Soil Samples by Alkaline Hydrolysis Diffusion Separation Acid-base Titration Based on a Polypropylene Diffusion Dish

  • BACKGROUND

    The traditional alkaline hydrolysis diffusion separation acid-base titration method is used to determine the hydrolysable nitrogen in soil samples. Usually, a glass diffusion dish is used for alkaline hydrolysis diffusion separation. However, during sample pretreatment and alkaline hydrolysis diffusion separation, the operator often faces the following three problems. First, the solution in the inner chamber of the glass diffusion dish is very easily polluted by sodium hydroxide solution and alkaline glue solution. Second, ammonia leakage occurs easily between the glass diffusion dish and the cover, and it is often not possible to remedy when it is found. Third, the glass diffusion dish is bulky and fragile, and the experimental operation is inconvenient, all of which lead to the instability of measurement results due to inexperience of the operator.

    OBJECTIVES

    To establish a new method for the determination of hydrolysable nitrogen in soil samples by alkaline hydrolysis diffusion separation acid-base titration based on polypropylene diffusion dish.

    METHODS

    A polypropylene diffusion dish was used instead of a glass diffusion dish in the alkaline hydrolysis of hydrolysable nitrogen. The cleaning method and the sealing of the diffusion dish were improved. The addition amount of reducing agent and the concentration of sodium hydroxide solution (1.8mol/L) were unified. The addition volume of sodium hydroxide solution was appropriately increased, and the concentration of hydrochloric acid standard solution was reduced.

    RESULTS

    The absolute deviation of reference materials GBW07416a with the measured value of hydrolysable nitrogen < 50mg/kg was 0.2-1.8mg/kg. The absolute deviation of reference materials GBW07415a, NSA-1, NSA-4, NSA-5 and NSA-6 with the measured value of hydrolysable nitrogen of 50-200mg/kg was 0-4.0mg/kg. The recovery rate of nitrate nitrogen converted to ammonium nitrogen by reducing agent was 89.6%-96.4%. The measured value of soil available reference materials was consistent with the standard value.

    CONCLUSIONS

    The stability and accuracy of hydrolysable nitrogen determination are improved. The pollution in this method is significantly reduced, ammonia leakage is avoided, and the operation is convenient. The method meets the requirements for determining the content of hydrolysable nitrogen in soil samples.

  • 加载中
  • [1] 吴昊, 朱红霞, 袁懋, 等. 气相分子吸收光谱法测定土壤中铵态氮和硝态氮[J]. 岩矿测试, 2021, 40(1): 165-171.

    Google Scholar

    Wu H, Zhu H X, Yuan M, et al. Determination of ammonium nitrogen and nitrate in soil by gas phase molecular absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165-171.

    Google Scholar

    [2] 李义纯, 王艳红, 陈勇, 等. 基于土壤质量的改良剂修复镉污染稻田综合效果评价[J]. 农业环境科学学报, 2021, 40(6): 1219-1228.

    Google Scholar

    Li Y C, Wang Y H, Chen Y, et al. A comprehensive evaluation of remediation effects on cadmium contamination in paddy fields based on soil quality[J]. Journal of Agro-Environment Science, 2021, 40(6): 1219-1228.

    Google Scholar

    [3] 王红, 徐静, 谢晓金, 等. 南京市绿地土壤养分特征及空间分布[J]. 江苏农业科学, 2021, 49(6): 212-218.

    Google Scholar

    Wang H, Xu J, Xie X J, et al. Characteristics and spatial distribution of soil nutrients in green space in Nanjing City[J]. Jiangsu Agricultural Sciences, 2021, 49(6): 212-218.

    Google Scholar

    [4] 程晓月, 许宏刚, 朱亚灵, 等. 兰州市中心城区道路绿地土壤pH和养分特征[J]. 草业科学, 2021, 38(3): 468-479.

    Google Scholar

    Cheng X Y, Xu H G, Zhu Y L, et al. Study on soil pH and nutrients in a roadside green belt in a central urban area of Lanzhou[J]. Pratacultural Science, 2021, 38(3): 468-479.

    Google Scholar

    [5] 代杰瑞, 庞绪贵, 刘华峰, 等. 山东省东部地区农业生态地球化学调查及生态问题浅析[J]. 岩矿测试, 2012, 31(1): 189-197.

    Google Scholar

    Dai J R, Pang X G, Liu H F, et al. Agro-ecological geochemical survey and evaluation of eastern Shandong Province[J]. Rock and Mineral Analysis, 2012, 31(1): 189-197.

    Google Scholar

    [6] 贺灵, 孙彬彬, 吴超, 等. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价[J]. 岩矿测试, 2019, 38(5): 524-533.

    Google Scholar

    He L, Sun B B, Wu C, et al. Assessment of soil environment quality and ecological risk for kiwifruit orchards in Jiangshan City, Zhejiang Province[J]. Rock and Mineral Analysis, 2019, 38(5): 524-533.

    Google Scholar

    [7] 王杰, 张春燕, 卢加文, 等. 广安区柑橘土壤养分状况及综合肥力评价[J]. 土壤通报, 2021, 52(6): 1360-1367.

    Google Scholar

    Wang J, Zhang C Y, Lu J W, et al. Nutrient status and comprehensive fertility evaluation of the citrus soil in Guang'an District[J]. Chinese Journal of Soil Science, 2021, 52(6): 1360-1367.

    Google Scholar

    [8] 曹胜, 周卫军, 刘沛, 等. 冰糖橙果园土壤养分与果实品质关系的多元分析及优化方案[J]. 土壤, 2021, 53(1): 97-104.

    Google Scholar

    Cao S, Zhou W J, Liu P, et al. Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis(L. ) osbeck orchard[J]. Soils, 2021, 53(1): 97-104.

    Google Scholar

    [9] 邓小华, 何铭钰, 陈金, 等. 山地酸性土壤耕层重构的理化性状及酶活性动态变化[J]. 中国烟草科学, 2021, 42(4): 17-23.

    Google Scholar

    Deng X H, He M Y, Chen J, et al. Dynamic of soil physi-chemical properties and enzymatic activities after restructured arable layer of mountainous acidic soil[J]. Chinese Tobacco Science, 2021, 42(4): 17-23.

    Google Scholar

    [10] 高宏艳, 索全义, 郑海春, 等. 基于GIS和丰缺指标法的区域施肥管理体系的构建[J]. 植物营养与肥料学报, 2021, 27(9): 1648-1655.

    Google Scholar

    Gao H Y, Suo Q Y, Zheng H C, et al. Construction of regional fertilization system based on GIS and nutrient abundance index[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1648-1655.

    Google Scholar

    [11] 冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源分析[J]. 岩矿测试, 2019, 38(6): 693-704.

    Google Scholar

    Feng H, Zhang X J, Zhang Q, et al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704.

    Google Scholar

    [12] 顾涛, 朱晓华, 赵信文, 等. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845.

    Google Scholar

    Gu T, Zhu X H, Zhao X W, et al. Relationship between lotus root quality and geochemical conditions in the Xinken lotus root producing area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845.

    Google Scholar

    [13] 周启龙. 藏西沙化草地根系分布与土壤理化性质的关系[J]. 水土保持通报, 2021, 41(1): 1-5.

    Google Scholar

    Zhou Q L. Relation between root distribution character-istics and soil physical and chemical properties in desertification grassland in western Tibet[J]. Bulletin of Soil and Water Conservation, 2021, 41(1): 1-5.

    Google Scholar

    [14] 粮农组织.《世界粮食和农业领域土地及水资源状况: 系统濒临极限》2021年概要报告[R/OL]. https://doi.org/10.4060/cb7654en.

    Google Scholar

    Food and Agriculture Organization.The state of the world's land and water resources for food and agriculture-systems at breaking point.Synthesis Report 2021.Rome[R/OL]. https://doi.org/10.4060/cb7654en.

    Google Scholar

    [15] 吴金卓, 孔琳琳, 李颖, 等. 近红外光谱法测定土壤全氮和碱解氮含量[J]. 湖南农业大学学报(自然科学版), 2016, 42(1): 91-96.

    Google Scholar

    Wu J Z, Kong L L, Li Y, et al. Prediction models of total and available soil nitrogen based on near-infrared spectroscopy[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(1): 91-96.

    Google Scholar

    [16] 彭海根, 金楹, 詹莜国, 等. 近红外光谱技术结合竞争自适应重加权采样变量选择算法快速测定土壤水解性氮含量[J]. 分析测试学报, 2020, 39(10): 1305-1310.

    Google Scholar

    Peng H G, Jin Y, Zhan Y G, et al. Quantitative determination of hydrolytic nitrogen content in soil by near infrared spectroscopy combined with competitive adaptive reweighted sampling variable selection algorithm[J]. Journal of Instrumental Analysis, 2020, 39(10): 1305-1310.

    Google Scholar

    [17] 石欣. 凯氏定氮仪测定土壤中水解性氮含量[J]. 宁夏农林科技, 2018, 59(11): 55-58.

    Google Scholar

    Shi X. Determination of hydrolytic nitrogen content in soil by Kjeltec nitrogen analyzer[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(11): 55-58.

    Google Scholar

    [18] 王晓岚, 卡丽毕努尔, 杨文念. 土壤碱解氮测定方法比较[J]. 北京师范大学学报(自然科学版), 2010, 46(1): 76-78.

    Google Scholar

    Wang X L, Ka L B N E, Yang W N. Comparison of methods for determining alkali-hydrolyzed nitrogen in soil[J]. Journal of Beijing Normal University (Natural Science), 2010, 46(1): 76-78.

    Google Scholar

    [19] 莎娜, 张三粉, 骆洪, 等. 两种土壤碱解氮测定方法的比较[J]. 内蒙古农业科技, 2014(6): 25-33.

    Google Scholar

    Sha N, Zhang S F, Luo H, et al. Comparison two kinds of determination method of soil alkaline hydrolysis nitrogen[J]. Inner Mongolia Agricultural Science and Technology, 2014(6): 25-33.

    Google Scholar

    [20] 魏娜. 两种土壤碱解氮测定方法比较[J]. 西藏农业科技, 2014, 36(1): 30-34.

    Google Scholar

    Wei N. Comparison between two methods of available nitrogen in soil[J]. Tibet Journal of Agricultural Sciences, 2014, 36(1): 30-34.

    Google Scholar

    [21] 孔凡伟. 简述土壤水解氮的测定方法[J]. 黑龙江农业科学, 2010(4): 159-160.

    Google Scholar

    Kong F W. The determination method briefly introduced of soil hydrolyzed nitrogen[J]. Heilongjiang Agricultural Sciences, 2010(4): 159-160.

    Google Scholar

    [22] 贺毅. 扩散法测定土壤中的水解性氮[J]. 华北自然资源, 2020(2): 95-100.

    Google Scholar

    He Y. Determination of hydrolytic nitrogen in soil by diffusion method[J]. Huabei Natural Resources, 2020(2): 95-100.

    Google Scholar

    [23] 施畅, 万秋月, 秦冲, 等. 塑料密封盒-滴定法测定土壤中碱解氮[J]. 中国无机分析化学, 2017, 7(3): 33-37.

    Google Scholar

    Shi C, Wan Q Y, Qin C, et al. Determination of alkali-hydrolyzable nitrogen in soil by titration with a sealed plastic box[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(3): 33-37.

    Google Scholar

    [24] 杨清华. 森林土壤中水解性氮测定方法改进研究[J]. 现代农业科技, 2018(18): 131-132.

    Google Scholar

    Yang Q H. Improvement of determination method of hydrolytic nitrogen in forest soil[J]. Modern Agricultural Science and Technology, 2018(18): 131-132.

    Google Scholar

    [25] 周剑. 塑料扩散皿在土壤水解性氮测定中的应用[J]. 福建地质, 2021, 40(1): 77-82.

    Google Scholar

    Zhou J. Application of plastic diffusion dish in determination of hydrolytic in soil[J]. Geology of Fujian, 2021, 40(1): 77-82.

    Google Scholar

    [26] 侯建伟, 邢存芳, 杨莉琳. 土壤碱解氮测定方法优化改革[J]. 西南师范大学学报(自然科学版), 2021, 46(7): 45-49.

    Google Scholar

    Hou J W, Xing C F, Yang L L. Optimization reform of soil available nitrogen determination method[J]. Journal of Southwest China Normal University (Natural Science Edition), 2021, 46(7): 45-49.

    Google Scholar

    [27] 童娟, 谢春梅. 碱解扩散法测定土壤水解性氮影响因素分析[J]. 宁夏农林科技, 2011, 52(9): 61-71.

    Google Scholar

    Tong J, Xie C M. Analysis on influencing factors of soil hydrolytic nitrogen determination by alkaline hydrolysis diffusion method[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2011, 52(9): 61-71.

    Google Scholar

    [28] 林晓峰. 土壤水解性氮含量的测定方法及注意事项[J]. 江西农业, 2017(11): 23-25.

    Google Scholar

    Lin X F. Determination method and precautions of soil hydrolytic nitrogen content[J]. Jiangxi Agriculture, 2017(11): 23-25.

    Google Scholar

    [29] 张英利, 马爱生, 杨岩荣, 等. 不同还原剂对土壤碱解氮测定结果的影响[J]. 干旱地区农业研究, 2002, 20(2): 39-41.

    Google Scholar

    Zhang Y L, Ma A S, Yang Y R, et al. Effect of different reductive on analysis results of soil available nitrogen[J]. Agricultural Research in the Arid Areas, 2002, 20(2): 39-41.

    Google Scholar

    [30] 刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536-544.

    Google Scholar

    Liu M, Gu T X, Cheng Z Z, et al. Ten reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536-544.

    Google Scholar

    [31] 李星, 郭小彪, 张墨. 土壤中水解性氮的测定条件选择[J]. 北京农业, 2015(24): 73-74.

    Google Scholar

    Li X, Guo X B, Zhang M. Selection of determination conditions of hydrolytic nitrogen in soil[J]. Beijing Agriculture, 2015(24): 73-74.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(3390) PDF downloads(110) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint