Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 1
Article Contents

LIU Jie, ZHAO Zhiming, YAN Ronghui, HUANG Zijian. Preparation of Reference Materials for Rock Evaluation of Mudstone[J]. Rock and Mineral Analysis, 2023, 42(1): 203-212. doi: 10.15898/j.cnki.11-2131/td.202201120008
Citation: LIU Jie, ZHAO Zhiming, YAN Ronghui, HUANG Zijian. Preparation of Reference Materials for Rock Evaluation of Mudstone[J]. Rock and Mineral Analysis, 2023, 42(1): 203-212. doi: 10.15898/j.cnki.11-2131/td.202201120008

Preparation of Reference Materials for Rock Evaluation of Mudstone

  • BACKGROUND

    As an oil and gas geochemical detection and analysis technology, rock pyrolysis is widely used in oil and gas exploration. Moreover, this technology is fast, economical, and effective in evaluating the hydrocarbon-generating potential of source rocks and identifying the oiliness of reservoir rocks. Rock pyrolysis standard materials are used for the calibration and quality monitoring of rock pyrolysis instruments, as well as being the key material basis for quantitative calculation of rock pyrolysis analysis parameters for source and reservoir rocks. At present, rock pyrolysis standard materials are relatively scarce, and most of the on-site mud logging rock pyrolysis tests use value transfer samples for instrument calibration and quality control, which brings uncertainties to data quality. At the same time, the rock pyrolysis standard material in China lacks the important parameter S4 for source rock evaluation, while the rock pyrolysis standard material in foreign countries has only one value and cannot be used for gradient calibration. Therefore, it cannot meet the application and development requirements of rock pyrolysis analysis technology in oil and gas exploration.

    OBJECTIVES

    To develop five kinds of reference materials for rock pyrolysis, with a certain gradient value of each parameter, which can satisfy the needs of conventional oil and gas testing in petroleum exploration.

    METHODS

    Candidate samples were collected from dark mudstone, oil shale and carbonaceous mudstone in the Triassic Yanchang Formation, Permian Shanxi Formation, Taiyuan Formation and Carboniferous Benxi Formation in the Ordos Basin. After impurity treatment, jaw crushing, ball mill fine grinding, powder sieving 200 mesh, mixer mixing, 60Co irradiation disinfection and sterilization, and passing the preliminary homogeneity test, the samples were packed and numbered.

    RESULTS

    For each candidate, 5×30 bottles of samples were randomly selected for uniformity testing, and the measured values of F were all less than F0.05(29, 60). There was no significant systematic difference within and between groups of samples, and the uniformity was good. Short-term stability and long-term stability were tested by the straight line fitting method, and the slope of the fitting line |b1| < t0.05·S(b1), had good stability. Eight laboratories adopted the rock pyrolysis analysis method for collaborative determination. All of the determination analysis data conformed to the normal distribution, and the determination results and corresponding uncertainties were obtained. The fixed value parameters are S2, Tmax, S4 and reference value S1, wherein the value range of S2 is 2.01-11.90mg/g, the value range of Tmax is 437-442℃, the value range of S4 is 9.5-29.9mg/g.

    CONCLUSIONS

    In accordance with the national standard material research standards and specifications, five reference materials for rock pyrolysis, GBW(E)070323, GBW(E)070324, GBW(E)070325, GBW(E)070326 and GBW(E)070327, were successfully developed. The value of each parameter presents a certain gradient, which basically covers the content range of conventional pyrolysis analysis.

  • 加载中
  • [1] 杨宇, 何则. 中国海外油气依存的现状、地缘风险与应对策略[J]. 资源科学, 2020, 42(8): 1614-1629.

    Google Scholar

    Yang Y, He Z. China's overseas oil and gas dependence: Situation, geographical risks, and countermeasures[J]. Resources Science, 2020, 42(8): 1614-1629.

    Google Scholar

    [2] 方锡贤. 岩石热解录井技术应用现状及发展思考[J]. 录井工程, 2018, 29(1): 4-8, 108.

    Google Scholar

    Fang X X. Application status and development thinking of rock pyrolysis logging technology[J]. Logging Engineering, 2018, 29(1): 4-8, 108.

    Google Scholar

    [3] 曾维主. 松辽盆地青山口组页岩孔隙结构与页岩油潜力研究[D]. 北京: 中国科学院大学, 2020.

    Google Scholar

    Zeng W Z. Pore structure and shale oil potential of Qingshankou Formation shale in Songliao Basin[D]. Beijing: University of Chinese Academy of Sciences, 2020.

    Google Scholar

    [4] 张冬梅, 张延延, 郭隽菁, 等. 基于岩石热解参数图版的烃源岩内部排烃效率计算方法[J]. 石油实验地质, 2021, 43(3): 532-539.

    Google Scholar

    Zhang D M, Zhang Y Y, Guo J J, et al. A calculation method for the efficiency of hydrocarbon expulsion based on parameter diagram of source rock pyrolysis[J]. Petroleum Geology & Experiment, 2021, 43(3): 532-539.

    Google Scholar

    [5] 曹孟贤, 蒋钱涛, 向超. 地化录井定量解释方法在南海东部海域西江凹陷的应用[J]. 复杂油气藏, 2021, 14(1): 36-38, 56.

    Google Scholar

    Cao M X, Jiang Q T, Xiang C. Application of quantitative interpretation method of geochemical logging in Xijiang Sag in eastern South China Sea[J]. Complex Hydrocarbon Reservoirs, 2021, 14(1): 36-38, 56.

    Google Scholar

    [6] 李永会, 刘刚, 高亮, 等. 基于岩石热解资料的烃源岩有机碳构成计算方法及应用[J]. 特种油气藏, 2022, 29(2): 51-56.

    Google Scholar

    Li Y H, Liu G, Gao L, et al. Calculation method and its application of organic carbon composition of source rocks based on rock pyrolysis data[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 51-56.

    Google Scholar

    [7] 侯连华, 杨帆, 杨春, 等. 常规油气区带与圈闭有效性定量评价原理及方法[J]. 石油学报, 2021, 42(9): 1126-1141.

    Google Scholar

    Hou L H, Yang F, Yang C, et al. Principles and methods for quantitative evaluation the effectiveness of conventional petroleum zones and traps[J]. Chinese Journal of Petroleum, 2021, 42(9): 1126-1141.

    Google Scholar

    [8] 段仁春. 岩石热解录井技术在特殊类型储层解释评价中的应用[J]. 当代石油石化, 2019, 27(11): 30-36.

    Google Scholar

    Duan R C. Application of rock pyrolysis logging technology in interpretation and evaluation of special reservoirs[J]. Contemporary Petroleum and Petrochemical, 2019, 27(11): 30-36.

    Google Scholar

    [9] 张振苓, 邬立言, 马文玲, 等. 岩石热解标准物质的研制[C]//第四届全国石油地质实验技术及实验室管理工作交流会议论文集, 2002: 188-193.

    Google Scholar

    Zhang Z L, Wu L Y, Ma W L, et al. Development of reference materials for rock pyrolysis[C]//Proceedings of the Fourth National Exchange Conference on Petroleum Geology Experiment Technology and Laboratory Management, 2002: 188-193.

    Google Scholar

    [10] 杨佳佳, 孙玮琳, 徐学敏, 等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11): 3515-3522.

    Google Scholar

    Yang J J, Sun W L, Xu X M, et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11): 3515-3522.

    Google Scholar

    [11] 贾浪波, 钟大康, 孙海涛, 等. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义[J]. 沉积学报, 2019, 37(5): 1087-1103.

    Google Scholar

    Jia L B, Zhong D K, Sun H T, et al. Sediment provenance analysis and tectonic implication of the Benxi Formation, Ordos Basin[J]. Acta Sedimentologica Sinca, 2019, 37(5): 1087-1103.

    Google Scholar

    [12] 韩载华, 赵靖舟, 孟选刚, 等. 鄂尔多斯盆地三叠纪湖盆东部"边缘"长7段烃源岩的发现及其地球化学特征[J]. 石油实验地质, 2020, 42(6): 991-1000.

    Google Scholar

    Han Z H, Zhao J Z, Meng X G, et al. Discovery and geochemical characteristics of Chang 7 source rocks from the eastern margin of a Triassic lacustrine basin in the Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(6): 991-1000.

    Google Scholar

    [13] 王传刚. 鄂尔多斯盆地海相烃源岩的成藏有效性分析[J]. 地学前缘, 2012, 19(1): 253-263.

    Google Scholar

    Wang C G. Availability analysis of oil pool forming for marine source rock in Ordos Basin[J]. Earth Science Frontiers, 2012, 19(1): 253-263.

    Google Scholar

    [14] 张亚雄. 鄂尔多斯盆地中部地区三叠系延长组7段暗色泥岩烃源岩特征[J]. 石油与天然气地质, 2021, 42(5): 1089-1097.

    Google Scholar

    Zhang Y X. Source rock characteristion: The dark mudstone Chang 7 Member of Triassic, central Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1089-1097.

    Google Scholar

    [15] 吉利明, 李剑锋, 张明震, 等. 鄂尔多斯盆地延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响[J]. 地学前缘, 2021, 28(1): 388-401.

    Google Scholar

    Ji L M, Li J F, Zhang M Z, et al. Effects of the lacustrine hydrothermal activity in the Yanchang Period on the abundance and type of organic matter in source rocks in the Ordos Basin[J]. Earth Science Frontiers, 2021, 28 (1): 388-401.

    Google Scholar

    [16] 肖晖, 赵靖舟, 熊涛, 等. 鄂尔多斯盆地古隆起西侧奥陶系烃源岩评价及成藏模式[J]. 石油与天然气地质, 2017, 38(6): 1087-1097.

    Google Scholar

    Xiao H, Zhao J Z, Xiong T, et al. Evaluation of Ordovician source rocks and natural gas accumulation patterns in west flank of paleo-uplift, Ordos Basin[J]. Oil & Gas Geology, 2017, 38(6): 1087-1097.

    Google Scholar

    [17] 黄彦杰, 白玉彬, 孙兵华, 等. 鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J]. 岩性油气藏, 2020, 32(1): 66-75.

    Google Scholar

    Huang Y J, Bai Y B, Sun B H, et al. Characteristics and evaluation of Chang 7 source rocks in Yanchang Formation, Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(1): 66-75.

    Google Scholar

    [18] 黄军平, 李相博, 何文祥, 等. 鄂尔多斯盆地南缘下寒武统高丰度烃源岩发育特征与油气勘探方向[J]. 海相油气地质, 2020, 25(4): 319-326.

    Google Scholar

    Huang J P, Li X B, He W X, et al. Development characteristics of high-abundance source rocks of the lower Cambrian and direction of oil and gas exploration in southern margin Ordos Basin[J]. Marine Oil and Gas Geology, 2020, 25(4): 319-326.

    Google Scholar

    [19] Behar F, Beaumont V, de Penteado H L D B. Rock-eval 6 technology: Performances and developments[J]. Oil & Gas Science and Technology, 2001, 56(2): 111-134.

    Google Scholar

    [20] 邬立言, 丁莲花, 李斌, 等. 油气储集岩热解快速定性定量评价[M]. 北京: 石油工业出版社, 2000.

    Google Scholar

    Wu L Y, Ding L H, Li B, et al. Rapid qualitative and quantitative evaluation of oil and gas reservoir rock pyrolysis[M]. Beijing: Petroleum Industry Press, 2000.

    Google Scholar

    [21] 王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804-807.

    Google Scholar

    Wang Y M, Wang X H, He H L, et al. The minimum sampling amount of geological reference materials[J]. Geological Bulletin, 2009, 28(6): 804-807.

    Google Scholar

    [22] 赵红坤, 于阗, 肖志博, 等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析, 2021, 41(3): 755-762.

    Google Scholar

    Zhao H K, Yu T, Xiao Z B, et al. Homogeneity test of geochemical certified reference materials by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 755-762.

    Google Scholar

    [23] 王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696-703.

    Google Scholar

    Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696-703.

    Google Scholar

    [24] 袁建, 李振涛, 郭冬发. 热液铀矿(火山岩型)成分分析标准物质的研制[J]. 核化学与放射化学, 2018, 40(4): 234-242.

    Google Scholar

    Yuan J, Li Z T, Guo D F. Preparation of certified reference materials for hydrothermal uranium ore-field component analysis[J]. Journal of Nuclear and Radiochemistry, 2018, 40(4): 234-242.

    Google Scholar

    [25] 王干珍, 彭君, 李力, 等. 锰矿石成分分析标准物质研制[J]. 岩矿测试, 2022, 41(2): 314-323.

    Google Scholar

    Wang G Z, Peng J, Li L, et al. Preparation of standard material for standard material for composition analysis of manganese ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314-323.

    Google Scholar

    [26] 王尧, 田衎, 封跃鹏, 等. 土壤中总有机碳环境标准样品研制[J]. 岩矿测试, 2021, 40(4): 593-602.

    Google Scholar

    Wang Y, Tian K, Feng Y P, et al. Preparation and certification of a soil total organic carbon reference material[J]. Rock and Mineral Analysis, 2021, 40(4): 593-602.

    Google Scholar

    [27] 任丹华. 原油中有害元素镍钒硫定值方法及标准物质研究[D]. 北京: 中国石油大学(北京), 2020.

    Google Scholar

    Ren D H. Study on the determination method and reference material of harmful elements nickel, vanadium and sulfur in crude oil[D]. Beijing: China University of Petroleum (Beijing), 2020.

    Google Scholar

    [28] 曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221.

    Google Scholar

    Zeng M Y, Chen Y B, Liu J, et al. Preparation of high-phosphorus iron ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221.

    Google Scholar

    [29] 陈宗定, 许春雪, 刘贵磊, 等. 6种南方酸性土壤重金属元素氯化钙可提取态标准物质研制[J]. 冶金分析, 2021, 41(10): 12-22.

    Google Scholar

    Chen Z D, Xu C X, Liu G L, et al. Development of six extractable certified reference materials of calcium chloride for analysis of heavy metals in southern acid soil[J]. Metallurgical Analysis, 2021, 41(10): 12-22.

    Google Scholar

    [30] 田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120.

    Google Scholar

    Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(4)

Article Metrics

Article views(2491) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint