Citation: | YANG Lin, SHI Zhen, YU Huimin, HUANG Fang. Determination of Silicon Isotopic Compositions of Rock and Soil Reference Materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136-145. doi: 10.15898/j.cnki.11-2131/td.202112060195 |
With the analytical technique development, the precision of Si isotopes analysis increases rapidly.Silicon isotopes are widely used in geochemistry, cosmochemistry, environmental chemistry and so on, and can be used to trace the circulation of crust-mantle material, the source of subducting fluid, and constrain the origin and evolution of the moon and extraterrestrial materials.To compare the precision and accuracy of Si isotope analysis results in different laboratories, it is necessary to analyze Si isotopes of reference materials with published Si isotope data.As generally used USGS reference materials are currently unavailable, it is important to report Si isotopes of new reference materials.
In order to continuously conduct research in various fields with high-precision silicon isotope data, by providing a supply of new reference materials.Silicon isotopes of 30 GBW reference materials with different compositions, including 11 igneous rocks, 2 sedimentary rocks, 2 metamorphic rocks, 6 river/marine sediments and 9 soils, were analyzed.The SiO2 content of these reference materials ranged from 32.69% to 90.36%, covering the variation range of most natural samples.
Alkali fusion method was used for sample digestion.Approximately 3-5mg of sample powder and 200mg of powdery NaOH were weighed in a 10mL silver crucible and heated.The Si purification was obtained using cation exchange resin AG50W-X12.6mol/L HNO3 and ultrapure water were used to clean the resin before sample loading.Silicon isotopes were measured by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS, Neptune Plus) at the laboratory in the University of Science and Technology of China (USTC), and the instrument mass bias was corrected by standard-sample-standard method, with a bracketing standard of NBS-28.The long-term reproducibility (over two years) of Si isotope analysis of one in-house standard (USTC-Si) and one international rock reference material (BHVO-2) were represented, with the δ30Si values of USTC-Si and BHVO-2 of-0.07‰±0.06‰(n=117, 2SD) and-0.29‰±0.06‰(n=320, 2SD), respectively.During Si isotope analysis, two rock reference materials BHVO-2 and AGV-2 were also analyzed to ensure the precision and accuracy of the data.The Si isotopic compositions of BHVO-2 and AGV-2 were consistent with the reported data in the previous literature (Figure 3), demonstrating the reliability of this measurement.
Except one sediment and two soil samples, the δ30Si values of most reference materials analyzed in this study range from-0.42‰ to-0.07‰, within the range of upper continental crust.The drainage sediment GBW07310 has the highest δ30Si value (0.85‰±0.01‰), while the yellow-red soil GBW07405 and the latosol GBW07407 have the lowest δ30Si values of-0.68‰±0.03‰ and-1.82‰±0.03‰, respectively.
The high-precision Si isotope data of 30 GBW reference materials helps replenish the database for Si isotope analysis.The Si isotope data of these standard materials show that the river sediment GBW07310 has a very high δ30Si value of-1.82‰±0.03‰, indicating that it may be formed by dissolved silicon precipitation, which are enriched in heavy Si isotopes; while highly weathered yellow-red soil GBW07405 and the latosol GBW07407 have the lowest δ30Si values of-0.68‰±0.03‰ and-1.82‰±0.03‰, respectively, indicating that the weathering and desiliconization process may lead to the loss of heavy Si isotopes.The δ30Si values of most remaining reference materials analyzed in this study vary from-0.42‰ to-0.07‰, within the variation range of the upper continental crust.There is no obvious correlation between δ30Si values and SiO2 contents of the 11 igneous rock reference materials, revealing that their Si isotopes were not controlled by partial melting or mineral crystallization processes, and there may be other processes which would affect the Si isotopic composition of these standards.In the case that generally used USGS reference materials have been sold out, these high-precision Si isotope data of GBW reference materials will supplement basic data for Si isotope testing in different laboratories and lay solid isotope research in various fields.
[1] | MacDonad R. Silicon in igneous and metamorphic rocks[M]//Aston S R. Silicon geochemistry and biogeochemistry. London: Pergamon Press Inc, 1983: 248. |
[2] | McDonough W F. Compositional model for the Earth's core[J]. Treatise on Geochemistry, 2003, 2: 547-568. |
[3] | Poitrasson F. Silicon isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 289-344. doi: 10.2138/rmg.2017.82.8 |
[4] | Nelson D M D, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372. doi: 10.1029/95GB01070 |
[5] | Barnes I L, Moore L J, Machlan L A, et al. Absolute isotopic ratios and atomic weight of a reference sample of silicon[J]. Journal of Research of the National Bureau of Standards, 1975, 79: 727-735. |
[6] | Reynolds J H, Verhoogen J. Natural variations in the isotopic constitution of silicon[J]. Geochimica et Cosmochimica Acta, 1953, 3(5): 224-234. doi: 10.1016/0016-7037(53)90041-6 |
[7] | Douthitt C B. The geochemistry of the stable isotopes of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1449-1458. doi: 10.1016/0016-7037(82)90278-2 |
[8] | Moliniv-elsko C, Mayeda T K, Clayton R N. Isotopic composition of silicon in meteorites[J]. Geochimica et Cosmochimica Acta, 1986, 50(12): 2719-2726. doi: 10.1016/0016-7037(86)90221-8 |
[9] | Ding T P. Analytical methods for silicon isotope deter-minations[M]//de Groot P A. Handbook of stable isotope analytical techniques. Elsevier B V, 2004: 523-537. |
[10] | Basile-Doelsch I, Meunier J D, Parron C. Another continental pool in the terrestrial silicon cycle[J]. Nature, 2005, 433(7024): 399-402. doi: 10.1038/nature03217 |
[11] | Georg R B, Reynolds B C, Frank M, et al. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS[J]. Chemical Geology, 2006, 235(1-2): 95-104. doi: 10.1016/j.chemgeo.2006.06.006 |
[12] | Savage P S, Georg R B, Armytage R M G, et al. Silicon isotope homogeneity in the mantle[J]. Earth and Planetary Science Letters, 2010, 295(1-2): 139-146. doi: 10.1016/j.epsl.2010.03.035 |
[13] | Yuan H L, Cheng C, Chen K Y, et al. Standard-sample bracketing calibration method combined with Mg as an internal standard for silicon isotopic compositions using multi-collector inductively coupled plasma mass spectro-metry[J]. Acta Geochimica, 2016, 35(4): 421-427. doi: 10.1007/s11631-016-0105-7 |
[14] | 程琤, 陈开运, 包志安, 等. 大型多接收等离子体质谱测定地质样品的硅同位素[J]. 矿物岩石地球化学通报, 2016, 35(3): 454-457. doi: 10.3969/j.issn.1007-2802.2016.03.007 Cheng C, Chen K Y, Bao Z A, et al. Determination of Si isotopic compositions of geological samples using high resolution multi-collector inductively coupled plasma mass spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 454-457. doi: 10.3969/j.issn.1007-2802.2016.03.007 |
[15] | 王俊霖, 王微, 魏海珍. 高精度硅同位素分析方法研究进展[J]. 高校地质学报, 2021, 27(3): 275-288. doi: 10.16108/j.issn1006-7493.2021033 Wang J L, Wang W, Wei H Z. Progress in high precision analytical approaches of silicon isotope[J]. Geological Journal of China Universities, 2021, 27(3): 275-288. doi: 10.16108/j.issn1006-7493.2021033 |
[16] | Armytage R M G, Georg R B, Savage P S, et al. Silicon isotopes in meteorites and planetary core formation[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3662-3676. doi: 10.1016/j.gca.2011.03.044 |
[17] | Zambardi T, Poitrasson F, Corgne A, et al. Silicon isotope variations in the inner Solar system: Implications for planetary formation, differentiation and composition[J]. Geochimica et Cosmochimica Acta, 2013, 121: 67-83. doi: 10.1016/j.gca.2013.06.040 |
[18] | Chen A X, Li Y H, Chen Y, et al. Silicon isotope composition of subduction zone fluids as recorded by jadeitites from Myanmar[J]. Contributions to Mineralogy and Petrology, 2020, 175: 6. doi: 10.1007/s00410-019-1645-8 |
[19] | 王学求, 张勤, 白金峰, 等. 地球化学基准与环境监测实验室分析指标对比与建议[J]. 岩矿测试, 2020, 39(1): 1-14. Wang X Q, Zhang Q, Bai J F, et al. Comparison of laboratory analysis parameters and guidelines for global geochemical baselines and environmental monitoring[J]. Rock and Mineral Analysis, 2020, 39(1): 1-14. |
[20] | 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则和方法[J]. 岩矿测试, 2021, 40(5): 627-636. Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. |
[21] | 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. |
[22] | Young E D, Galy A, Nagahara H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1095-1104. doi: 10.1016/S0016-7037(01)00832-8 |
[23] | Savage P S, Georg R B, Williams H M, et al. Silicon isotope fractionation during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6124-6139. doi: 10.1016/j.gca.2011.07.043 |
[24] | Zambardi T, Poitrasson F. Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2011, 35(1): 89-99. doi: 10.1111/j.1751-908X.2010.00067.x |
[25] | Yu H M, Li Y H, Gao Y J, et al. Silicon isotopic com-positions of altered oceanic crust: Implications for Si isotope heterogeneity in the mantle[J]. Chemical Geology, 2018, 479: 1-9. doi: 10.1016/j.chemgeo.2017.12.013 |
[26] | An Y J, Li X, Zhang Z F. Barium isotopic compositions in thirty-four geological reference materials analysed by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 183-199. doi: 10.1111/ggr.12299 |
[27] | Savage P S, Georg R B, Williams H M, et al. The silicon isotope composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2013, 109: 384-399. doi: 10.1016/j.gca.2013.02.004 |
[28] | Savage P S, Georg R B, Williams H M, et al. The silicon isotope composition of granites[J]. Geochimica et Cosmochimica Acta, 2012, 92: 184-202. doi: 10.1016/j.gca.2012.06.017 |
[29] | Liu X C, Li X H, Liu Y, et al. Insights into the origin of purely sediment-derived Himalayan leucogranites: Si-O isotopic constraints[J]. Science Bulletin, 2018, 63(19): 1243-1245. |
[30] | André L, Cardinal D, Alleman L Y, et al. Silicon isotopes in ~3.8Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle[J]. Earth and Planetary Science Letters, 2006, 245(1-2): 162-173. |
[31] | Savage P S, Georg R B, Williams H M, et al. Silicon isotopes in granulite xenoliths: Insights into isotopic fractionation during igneous processes and the composition of the deep continental crust[J]. Earth and Planetary Science Letters, 2013b, 365: 221-231. |
[32] | Frings P J, Rocha C D L, Struyf E, et al. Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes[J]. Geochimica et Cosmochimica Acta, 2014, 142: 132-148. |
[33] | Zeng Z, Sun Y F, Tang H Y, et al. Silicon isotope com-positions of reference materials for soils and sediments determined by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2021, 46(1): 117-127. |
[34] | Delvigne C, Guihou A, Schuessler J A, et al. Silicon isotope analyses of soil and plant reference materials: An inter-comparison of seven laboratories[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 525-538. |
[35] | Pogge von Strandmann P A P, Opfergelt S, Lai Y L, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339: 11-23. |
[36] | Cornelis J T, Weis D, Opfergelt S, et al. Past and current geochemical conditions influence silicon isotope signatures of pedogenic clay minerals at the soil profile scale, Ethiopia[J]. Chemical Geology, 2019, 524: 174-183. |
δ30Si values of GBW reference materials. The blue shaded area represents δ30Si variation of the upper continental crust[27].
δ30Si vs SiO2 (%) of igneous rocks analyzed in this study. The dotted line represents 'the igneous array' (Savage, et al[23]).
Correlation between δ30Si(‰) value and CIA (chemical index of alteration) of soil samples.