Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 3
Article Contents

WAN Dan, CHEN Jiubin, ZHANG Ting, AN Yuchen, SHUAI Wangcai. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. doi: 10.15898/j.cnki.11-2131/td.202110090142
Citation: WAN Dan, CHEN Jiubin, ZHANG Ting, AN Yuchen, SHUAI Wangcai. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. doi: 10.15898/j.cnki.11-2131/td.202110090142

Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review

More Information
  • BACKGROUND

    Soil cadmium pollution has become one of the main factors that endanger human health. Rapid and effective remediation of Cd pollution soil requires a fundamental understanding of Cd sources and geochemical cycling. With the advancement of Cd isotope analysis technology and the in-depth understanding of its fractionation mechanism, Cd isotopes provide new perspectives for understanding the source and fate of Cd in the soil.

    OBJECTIVES

    To systematically summarize the cadmium isotope analysis method, and emphasize the research progress, problems, and potential application of Cd isotopes as tracers in soil.

    METHODS

    Sample digestion methods, such as high-temperature digestion bombs, microwave acid digestion, ashing, and acid extraction, are reviewed here with ion-exchange separation and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS).

    RESULTS

    Based on previous studies, this review systematically summarizes the fundamental principle and methodology of Cd isotopic analysis methods. For the soil samples, the high-temperature digestion bombs method and microwave acid digestion can meet its cadmium isotope analysis requirements. With sufficient recovery and complete removal of interfering elements, standard-sample bracketing, external normalization, and double-spike techniques can be used for mass bias correction to obtain accurate and reliable Cd isotope data. In addition, the theoretical basis of soil cadmium isotope tracing was reviewed. This review summarizes the cadmium isotopic composition of multiple potential cadmium sources in soil and the direction and extent of cadmium isotope fractionation in typical processes (weathering leaching, adsorption, precipitation/co-precipitation, complexation). Combined with the latest research results, the application of cadmium isotopes in tracing soil cadmium sources and their migration and transformation processes is summarized.

    CONCLUSIONS

    In the future, we should further develop and optimize the high-precision cadmium isotope analysis method, construct the fingerprint map of soil cadmium isotope, and reveal the cadmium isotope fractionation mechanisms in the processes of multi-component and multi-interface.

  • 加载中
  • [1] Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018

    CrossRef Google Scholar

    [2] Grant C, Flaten D, Tenuta M, et al. The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment[J]. Plant and Soil, 2013, 372(1): 221-233.

    Google Scholar

    [3] Teng Y, Wu J, Lu S, et al. Soil and soil environmental quality monitoring in China: A review[J]. Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014

    CrossRef Google Scholar

    [4] Wan D, Zhang N, Chen W, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(32): 32130-32139. doi: 10.1007/s11356-018-3173-x

    CrossRef Google Scholar

    [5] Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.

    Google Scholar

    [6] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11.

    Google Scholar

    Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry, 2014, 36(5): 10-11.

    Google Scholar

    [7] Liu X, Zhong L, Meng J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution, 2018, 239: 308-317. doi: 10.1016/j.envpol.2018.04.033

    CrossRef Google Scholar

    [8] Wang P, Chen H, Kopittke P M, et al. Cadmium contam-ination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063

    CrossRef Google Scholar

    [9] Yang S, Zhao J, Chang S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044

    CrossRef Google Scholar

    [10] Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.

    Google Scholar

    [11] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

    CrossRef Google Scholar

    Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

    CrossRef Google Scholar

    [12] Huang H, Chen H P, Kopittke P M, et al. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage[J]. Environmental Science & Technology, 2021, 55(3): 1750-1758.

    Google Scholar

    [13] Qu C, Chen W, Hu X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995

    CrossRef Google Scholar

    [14] 赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452-458.

    Google Scholar

    Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 452-458.

    Google Scholar

    [15] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272.

    Google Scholar

    Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272.

    Google Scholar

    [16] 党志, 姚谦, 李晓飞, 等. 矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020, 39(1): 1-11.

    Google Scholar

    Dang Z, Yao Q, Li X F, et al. Geochemical constraints on heavy metal speciation and distribution in contaminated soils of mining areas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 1-11.

    Google Scholar

    [17] 韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1-44, 223.

    Google Scholar

    Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1-44, 223.

    Google Scholar

    [18] Teng F Z, Dauphas N, Watkins J M. Non-traditional stable isotopes: Retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26. doi: 10.2138/rmg.2017.82.1

    CrossRef Google Scholar

    [19] Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 2021, 407: 124812. doi: 10.1016/j.jhazmat.2020.124812

    CrossRef Google Scholar

    [20] Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.

    Google Scholar

    [21] Rosman K J R, de Laeter J R. Isotopic fractionation in meteoritic cadmium[J]. Nature, 1976, 261(5557): 216-218. doi: 10.1038/261216a0

    CrossRef Google Scholar

    [22] Rosman K J R, de Laeter J R, Gorton M P. Cadmium isotope fractionation in fractions of two H3 chondrites[J]. Earth and Planetary Science Letters, 1980, 48(1): 166-170. doi: 10.1016/0012-821X(80)90179-X

    CrossRef Google Scholar

    [23] Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335.

    Google Scholar

    [24] Wombacher F, Rehkämper M, Mezger K, et al. Cadmium stable isotope cosmochemistry[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 646-667. doi: 10.1016/j.gca.2007.10.024

    CrossRef Google Scholar

    [25] Schmitt A D, Galer S J G, Abouchami W. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1): 262-272.

    Google Scholar

    [26] Zhong Q, Zhou Y, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 139585. doi: 10.1016/j.scitotenv.2020.139585

    CrossRef Google Scholar

    [27] 王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

    CrossRef Google Scholar

    Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

    CrossRef Google Scholar

    [28] 李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15.

    Google Scholar

    Li H T, Yang X, Lei H J, et al. Research progress of cadmium stable isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15.

    Google Scholar

    [29] Zhong Q, Yin M, Zhang Q, et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments[J]. Journal of Hazardous Materials, 2021, 411: 125015. doi: 10.1016/j.jhazmat.2020.125015

    CrossRef Google Scholar

    [30] Xie X, Luo J, Guan L, et al. Cadmium isotope fractionation during leaching with nitrilotriacetic acid[J]. Chemical Geology, 2021, 584: 120523. doi: 10.1016/j.chemgeo.2021.120523

    CrossRef Google Scholar

    [31] He H T, Xing L C, Qin S J, et al. Equilibrium Cd isotopic fractionation between Cd(OH)2(S), apatite, adsorbed Cd2+, and Cd(aq)2+: Potential application of δ114Cd in evaluating the effectiveness of Cd-contamination remediation[J]. Geochemical Journal, 2020, 54(5): 289-297. doi: 10.2343/geochemj.2.0599

    CrossRef Google Scholar

    [32] Zhang S N, Gu Y, Zhu Z L, et al. Stable isotope fractionation of cadmium in the soil-rice-human continuum[J]. Science of the Total Environment, 2021, 761: 143262. doi: 10.1016/j.scitotenv.2020.143262

    CrossRef Google Scholar

    [33] Borovic ˇka J, Ackerman L, Rejšek J. Cadmium isotopic composition of biogenic certified reference materials determined by thermal ionization mass spectrometry with double spike correction[J]. Talanta, 2021, 221: 121389. doi: 10.1016/j.talanta.2020.121389

    CrossRef Google Scholar

    [34] Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236

    CrossRef Google Scholar

    [35] Liu M S, Zhang Q, Zhang Y, et al. High-precision Cd isotope measurements of soil and rock reference materials by MC-ICP-MS with double spike correction[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 169-182. doi: 10.1111/ggr.12291

    CrossRef Google Scholar

    [36] Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727. doi: 10.1039/C9JA00397E

    CrossRef Google Scholar

    [37] Yan X, Zhu M, Li W, et al. Cadmium isotope fractionation during adsorption and substitution with iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2021, 55(17): 11601-11611.

    Google Scholar

    [38] Ratié G, Chrastny V, Guinoiseau D, et al. Cadmium isotope fractionation during complexation with humic acid[J]. Environmental Science & Technology, 2021, 55(11): 7430-7444.

    Google Scholar

    [39] Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029

    CrossRef Google Scholar

    [40] Wasylenki L E, Swihart J W, Romaniello S J. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength[J]. Geochimica et Cosmochimica Acta, 2014, 140: 212-226. doi: 10.1016/j.gca.2014.05.007

    CrossRef Google Scholar

    [41] Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060

    CrossRef Google Scholar

    [42] Xie X, Yan L, Li J, et al. Cadmium isotope fractionation during Cd-calcite coprecipitation: Insight from batch experiment[J]. Science of the Total Environment, 2021, 760: 143330. doi: 10.1016/j.scitotenv.2020.143330

    CrossRef Google Scholar

    [43] Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039

    CrossRef Google Scholar

    [44] Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1): 243-253.

    Google Scholar

    [45] Zhao Y, Li Y, Wiggenhauser M, et al. Theoretical isotope fractionation of cadmium during complexation with organic ligands[J]. Chemical Geology, 2021, 571: 120178. doi: 10.1016/j.chemgeo.2021.120178

    CrossRef Google Scholar

    [46] Wang P, Li Z, Liu J, et al. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses[J]. Environmental Pollution, 2019, 249: 208-216. doi: 10.1016/j.envpol.2019.03.034

    CrossRef Google Scholar

    [47] 刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696.

    Google Scholar

    Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmetal tracing[J]. Earth and Environment, 2015, 43(6): 687-696.

    Google Scholar

    [48] Komárek M, Ratié G, Vaňková Z, et al. Metal isotope complexation with environmentally relevant surfaces: Opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2021, https://doi.org/10.1080/10643389.2021.1955601.

    Google Scholar

    [49] 苗鑫, 陈林捷, 周飞杨, 等. 高精度镉同位素分析样品消解方法对比研究[J]. 分析测试学报, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

    CrossRef Google Scholar

    Miao X, Chen L J, Zhou F Y, et al. Comparison of sample digestion methods for high precision cadmium isotope analysis[J]. Journal of Instrumental Analysis, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

    CrossRef Google Scholar

    [50] Fedyunina N N, Seregina I F, Bolshov M A, et al. Investi-gation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique[J]. Analytica Chimica Acta, 2012, 713: 97-102. doi: 10.1016/j.aca.2011.11.035

    CrossRef Google Scholar

    [51] Park J, Kim J Y, Lee K, et al. Comparison of acid extra-ction and total digestion methods for measuring Cd isotope ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2019, 192(1): 41.

    Google Scholar

    [52] Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D

    CrossRef Google Scholar

    [53] Pallavicini N, Engström E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G

    CrossRef Google Scholar

    [54] Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 245-256. doi: 10.1111/ggr.12357

    CrossRef Google Scholar

    [55] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636.

    Google Scholar

    Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636.

    Google Scholar

    [56] Gault-Ringold M. The marine biogeochemisty of cadmium: Studies of cadmium isotopic variations in the Southern Ocean[D]. Dunedin: University of Otago, 2011.

    Google Scholar

    [57] 张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637.

    Google Scholar

    Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological sample[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637.

    Google Scholar

    [58] Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2

    CrossRef Google Scholar

    [59] Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, NOD-P-1, NOD-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x

    CrossRef Google Scholar

    [60] Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020

    CrossRef Google Scholar

    [61] 杜晨. 镉同位素分析及其古海洋环境指示意义[D]. 武汉: 中国地质大学(武汉), 2015.

    Google Scholar

    Du C. Cadmium isotope analytical method and its paleo-ocean environmental sugnificance[D]. Wuhan: China University of Geosciences (Wuhan), 2015.

    Google Scholar

    [62] 段桂玲, 段瑞春, 谭娟娟, 等. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进[J]. 岩矿测试, 2016, 35(1): 10-16.

    Google Scholar

    Duan G L, Duan R C, Tan J J, et al. Improvement on effective separation between cadmium and tin in soil samples for the determination of cadmium isotopic composition[J]. Rock and Mineral Analysis, 2016, 35(1): 10-16.

    Google Scholar

    [63] 谢胜凯, 曾远, 刘瑞萍, 等. AG-MP-1M在氢溴酸体系中分离镉的方法[J]. 核化学与放射化学, 2020, 42(4): 256-261.

    Google Scholar

    Xie S K, Zeng Y, Liu R P, et al. Separation of cadmium in hydrobromic acid by anion resin AG-MP-1M[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 256-261.

    Google Scholar

    [64] Zhou F Y, He D, Miao X, et al. Development of an automatic column chromatography separation device for metal isotope analysis based on droplet counting[J]. Analytical Chemistry, 2021, 93(19): 7196-7203. doi: 10.1021/acs.analchem.1c00145

    CrossRef Google Scholar

    [65] 朱志勇, 朱祥坤, 杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390.

    Google Scholar

    Zhu Z Y, Zhu X K, Yang T. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390.

    Google Scholar

    [66] Böhlke J K, Laeter J R D, Bièvre P D, et al. Isotopic compositions of the elements, 2001[J]. Journal of Physical and Chemical Reference Data, 2005, 34(1): 57-67. doi: 10.1063/1.1836764

    CrossRef Google Scholar

    [67] Abouchami W, Galer S J G, de Baar H J W, et al. Biogeo-chemical cycling of cadmium isotopes in the Southern Ocean along the zero meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022

    CrossRef Google Scholar

    [68] Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025

    CrossRef Google Scholar

    [69] Lu Z, Zhu J M, Tan D, et al. δ114/110Cd values of a suite of different reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 565-581. doi: 10.1111/ggr.12380

    CrossRef Google Scholar

    [70] Peng H, He D, Guo R, et al. High precision cadmium isotope analysis of geological reference materials by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 390-398. doi: 10.1039/D0JA00424C

    CrossRef Google Scholar

    [71] Chrastny V, adková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002

    CrossRef Google Scholar

    [72] Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4

    CrossRef Google Scholar

    [73] Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11): 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016

    CrossRef Google Scholar

    [74] Martinková E, Chrastny V, Francová M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039

    CrossRef Google Scholar

    [75] Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractiona-tion during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013

    CrossRef Google Scholar

    [76] Cloquet C, Carignan J, Libourel G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40(8): 2525-2530.

    Google Scholar

    [77] Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science & Technology, 2018, 52(4): 1919-1928.

    Google Scholar

    [78] Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science & Technology, 2017, 51(13): 7369-7377.

    Google Scholar

    [79] Barraza F, Moore R E T, Rehkämper M, et al. Cadmium isotope fractionation in the soil -cacao systems of ecuador: A pilot field study[J]. RSC Advances, 2019, 9(58): 34011-34022. doi: 10.1039/C9RA05516A

    CrossRef Google Scholar

    [80] Gou W, Li W, Ji J, et al. Zinc isotope fractionation during sorption onto Al oxides: Atomic level understanding from EXAFS[J]. Environmental Science & Technology, 2018, 52(16): 9087-9096.

    Google Scholar

    [81] 李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314-1320.

    Google Scholar

    Li X, Zhang H M, Xu Z, et al. Source apportionment and risk assessmet of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7): 1314-1320.

    Google Scholar

    [82] Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(5533) PDF downloads(340) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint