Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 3
Article Contents

DONG Shuxia, XIE Ningning, HAN Jiqing, XIONG Junbiao, WU Shaowei. Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling[J]. Rock and Mineral Analysis, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127
Citation: DONG Shuxia, XIE Ningning, HAN Jiqing, XIONG Junbiao, WU Shaowei. Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling[J]. Rock and Mineral Analysis, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127

Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling

More Information
  • BACKGROUND

    The quality of rapeseed and the degree of heavy metal pollution are directly related to human health. Monitoring the content of toxic elements such as As, Sb, Cd, and Tl in rapeseed is helpful for early monitoring of raw materials for edible oil production.

    OBJECTIVES

    To avoid the cumbersome pretreatment of strong acid digestion, quickly determine the accurate content of volatile toxic elements such as As, Sb, Cd, and Tl in rapeseed, and to solve the challenge of pretreatment due to the heavy fat content of grains, oils, and foods.

    METHODS

    A suspension-emulsion synergistic sample preparation technique was used to investigate conditions affecting suspension-emulsion, and a homogeneous and stable slurry-emulsion solution (SES) system was prepared. In the electrothermal vaporizer (ETV) with high sampling efficiency, the temperature-programmed parameters and the dosage of improver palladium nitrate were all optimized. SES was directly injected, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine As, Sb, Cd and Tl.

    RESULTS

    The overall reproducibility (relative standard deviation, RSD) of the suspension-emulsion sampling-ETV-ICP-MS detection method were 10.1%, 8.8%, 8.9% and 6.4% [c=0.5% (m/V), n=5] for As, Sb, Cd and Tl, respectively. Under the optimum conditions, the limits of detection (3σ) were 40.0ng/L, 20.0ng/L, 50.0ng/L and 10.0ng/L for As, Sb, Cd and Tl, respectively. Accordingly, the limits of detection for the original solid samples were 8.0ng/g, 4.0ng/g, 10.0ng/g and 2.0ng/g for As, Sb, Cd and Tl, respectively. The contents of As, Sb, Cd and Tl in tested rapeseed samples were 50.4-90.5ng/g, 28.0-59.9ng/g, 51.3-69.1ng/g and 91.3-216.6ng/g, respectively.

    CONCLUSIONS

    The suspension-emulsion synergistic treatment of rapeseed with high oil content is simple, fast, and cost efficient. It utilizes the advantages of ETV sampling and promotes the application of ETV-ICP-MS solid sampling analysis.

  • 加载中
  • [1] Ghane E T, Poormohammadi A, Khazaei S, et al. Concentration of potentially toxic elements in vegetable oils and health risk assessment: A systematic review and meta-analysis[J]. Biological Trace Element Research, 2022, 200(1): 437-446. doi: 10.1007/s12011-021-02645-x

    CrossRef Google Scholar

    [2] Shah N S, Soylak M. Advanced methodologies for trace elements in edible oil samples: A review[J]. Critical Reviews in Analytical Chemistry, 2021, 1895710: 1-20.

    Google Scholar

    [3] 贺小敏, 王敏, 王小东, 等. 微波消解-石墨炉原子吸收光谱法测定菜籽及饼粕中铅和镉[J]. 光谱学与光谱分析, 2007, 27(11): 2353-2356.

    Google Scholar

    He X M, Wang M, Wang X D, et al. Determination of lead and cadmium in rapeseed and meal by microwave digestion-inductively coupled plasma mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2353-2356.

    Google Scholar

    [4] López-García I, Vicente-Martínez Y, Hernández-Córdoba M. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction[J]. Talanta, 2014, 124(13): 106-110.

    Google Scholar

    [5] 张友峰, 吕和霖, 郑盼茜, 等. 油菜籽皮仁中重金属、多环芳烃和硫苷含量分布[J]. 中国油脂, 2021, 46(7): 86-91.

    Google Scholar

    Zhang Y F, Lyu H L, Zheng P Q, et al. Distribution of heavy metal polycyclic aromatic hydrocarbons and glucosinolates in rapeseed kernels[J]. China Oils and Fats, 2021, 46(7): 86-91.

    Google Scholar

    [6] 刘全吉, 杨慧, 毛雪飞, 等. 测定油菜籽中4种形态砷的前处理方法研究[J]. 农产品质量与安全, 2015(5): 45-48. doi: 10.3969/j.issn.1674-8255.2015.05.012

    CrossRef Google Scholar

    Liu Q J, Yang H, Mao X F, et al. Study on the pretreatment method for the determination of four forms of arsenic in rapeseed[J]. Quality and Safety of Agro-Products, 2015(5): 45-48. doi: 10.3969/j.issn.1674-8255.2015.05.012

    CrossRef Google Scholar

    [7] 刘玲娅, 刘信平, 廖红华, 等. 食用油菜籽中硒和铊的分布形态分析[J]. 药物分析杂志, 2017, 37(5): 875-881.

    Google Scholar

    Liu L Y, Liu X P, Liao H H, et al. Distribution and speciation analysis of selenium and thallium in edible rapeseed[J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(5): 875-881.

    Google Scholar

    [8] 武琳霞, 丁小霞, 李培武, 等. 我国油菜镉污染及菜籽油质量安全性评估[J]. 农产品质量与安全, 2016(1): 41-46. doi: 10.3969/j.issn.1674-8255.2016.01.010

    CrossRef Google Scholar

    Wu L X, Ding X X, Li P W, et al. Cadmium pollution of rapeseed and quality and safety evaluation of rapeseed oil in China[J]. Quality and Safety of Agro-Products, 2016(1): 41-46. doi: 10.3969/j.issn.1674-8255.2016.01.010

    CrossRef Google Scholar

    [9] Huang S, Jiang S. Determination of Zn, Cd and Pb in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(6): 664-668. doi: 10.1039/b101387o

    CrossRef Google Scholar

    [10] Medek P, Pavlí ková J, Zbíral J, et al. Inductively coupled plasma mass spectrometric (ICP/MS) determination of thallium in soils and winter rapeseeds[J]. International Journal of Environmental Analytical Chemistry, 2001, 81(3): 207-219. doi: 10.1080/03067310108044343

    CrossRef Google Scholar

    [11] Llorent-Martínez E J, Ortega-Barrales P M, Fernández-de Córdova L, et al. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain[J]. Food Chemistry, 2011, 127(3): 1257-1262. doi: 10.1016/j.foodchem.2011.01.064

    CrossRef Google Scholar

    [12] 张飞鸽, 元艳, 周顺超, 等. 微波消解-电感耦合等离子体质谱法测定油菜籽中的六种重金属含量[J]. 资源环境与工程, 2017, 31(6): 811-814.

    Google Scholar

    Zhang F G, Yuan Y, Zhou S C, et al. Determination of six heavy metals in rapeseed by microwave digestion-inductively coupled plasma mass spectrometry[J]. Resources, Environment and Engineering, 2017, 31(6): 811-814.

    Google Scholar

    [13] 乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素[J]. 岩矿测试, 2020, 39(1): 99-107.

    Google Scholar

    Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by solid direct injection electrothermal evaporation inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107.

    Google Scholar

    [14] García-Mesa J C, Montoro-Leal P, Rodríguez-Moreno R M A, et al. Direct solid sampling for speciation of Zn2+ and ZnO nanoparticles in cosmetics by graphite furnace atomic absorption spectrometry[J]. Talanta, 2021, 223(1): 121795.

    Google Scholar

    [15] Schreiter N, Wiche O, Aubel I, et al. Determination of germanium in plant and soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling[J]. Journal of Geochemical Exploration, 2021, 220: 106674. doi: 10.1016/j.gexplo.2020.106674

    CrossRef Google Scholar

    [16] 林建奇. 双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞[J]. 岩矿测试, 2021, 40(4): 512-521.

    Google Scholar

    Lin J Q. Determination of trace mercury in rocks by dual channel atomic fluorescence spectrometry and solid injection cold atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521.

    Google Scholar

    [17] 高捷, 盛成, 朱月琴, 等. 悬浮液进样-全反射X射线荧光光谱法测定食品中的多无机元素[J]. 光谱学与光谱分析, 2020, 40(3): 945-949.

    Google Scholar

    Gao J, Sheng C, Zhu Y Q, et al. Determination of polyinorganic elements in food by suspension injection-total reflection X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 945-949.

    Google Scholar

    [18] 王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523.

    Google Scholar

    Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension injection-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523.

    Google Scholar

    [19] Harrington J M, Haines L G, Essader A S, et al. Quan-titation of total vanadium in rodent plasma and urine by inductively coupled plasma-mass spectrometry (ICP-MS)[J]. Analytical Letters, 2021, 54(17): 2777-2788. doi: 10.1080/00032719.2021.1890107

    CrossRef Google Scholar

    [20] Liu T, Bolea-Fernandez E, Mangodt C, et al. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells[J]. Analytica Chimica Acta, 2021, 1177: 338797. doi: 10.1016/j.aca.2021.338797

    CrossRef Google Scholar

    [21] 王佳翰, 李正鹤, 杨峰. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315.

    Google Scholar

    Wang J H, Li Z H, Yang F. Lithium metaborate alkali melting-inductively coupled plasma mass spectrometry for simultaneous determination of 48 elements in marine sediments[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315.

    Google Scholar

    [22] Markovic S, Ursic K, Cemazar M, et al. High spatial resolution imaging of cisplatin and Texas Red cisplatin in tumour spheroids using laser ablation isotope dilution inductively coupled plasma mass spectrometry and confocal fluorescence microscopy[J]. Analytica Chimica Acta, 2021, 1162: 338424. doi: 10.1016/j.aca.2021.338424

    CrossRef Google Scholar

    [23] Ansberque C, Chew D M, Drost K, et al. Apatite fission-track dating by LA-Q-ICP-MS imaging[J]. Chemical Geology, 2021, 560: 1-13.

    Google Scholar

    [24] Kovacs R, Schlosser S, Staub S P. Characterization of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(4): 476-483. doi: 10.1039/b819685k

    CrossRef Google Scholar

    [25] Qiao L, Wu Z W, Li Y, et al. A novel calibration strategy for the analysis of airborne particulate matter by direct solid sampling ETV-ICP-MS[J]. Microchemical Journal, 2020, 159: 105474. doi: 10.1016/j.microc.2020.105474

    CrossRef Google Scholar

    [26] Scheffler G L, Makonnen Y, Pozebon D, et al. Solid sampling analysis of a Mg alloy using electrothermal vaporization inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 2041-2045. doi: 10.1039/C7JA00203C

    CrossRef Google Scholar

    [27] Au M, Karbach H, Bell A M, et al. Determination of metal uptake in single organisms, Corophium volutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laser ablation/inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35(2): 1-10.

    Google Scholar

    [28] Tseng Y J, Tsai Y D, Jiang S J. Electrothermal vapor-ization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples[J]. Analytical & Bioanalytical Chemistry, 2007, 387(8): 2849-2855.

    Google Scholar

    [29] Masson P, Dauthieu M, Trolard F, et al. Application of direct solid analysis of plant samples by electrothermal vaporization-inductively coupled plasma atomic emission spectrometry: Determination of Cd and Si for environmental purposes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(3): 224-230. doi: 10.1016/j.sab.2007.01.004

    CrossRef Google Scholar

    [30] Liao H C, Jiang S J. EDTA as the modifier for the determination of Cd, Hg and Pb in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(10): 1583-1588. doi: 10.1039/a905328j

    CrossRef Google Scholar

    [31] Li P C, Jiang S J. Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determin-ation of Cr, Cu, Cd, Hg and Pb in rice flour[J]. Analytica Chimica Acta, 2003, 495(1-2): 143-150. doi: 10.1016/S0003-2670(03)00874-2

    CrossRef Google Scholar

    [32] Borges D, Welz B, Curtius A J. Determination of As, Cd, Pb and Tl in coal by electrothermal vaporization inductively coupled plasma mass spectrometry using slurry sampling and external calibration against aqueous standards[J]. Microchimica Acta, 2007, 159(1-2): 19-26. doi: 10.1007/s00604-006-0730-7

    CrossRef Google Scholar

    [33] Zhang Y F, Jiang Z C, He M, et al. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J]. Environmental Pollution, 2007, 148(2): 459-467. doi: 10.1016/j.envpol.2006.12.004

    CrossRef Google Scholar

    [34] Sun Y, Ko C J. Combining electrothermal vaporization inductively coupled plasma mass spectrometry with in situ TMAH thermochemolysis for the direct determination of trace impurities in a polymer-based photoresist[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(3): 311-316. doi: 10.1039/b512233c

    CrossRef Google Scholar

    [35] Hsu W H, Jiang S J, Sahayam A C. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier[J]. Talanta, 2013, 117: 268-272. doi: 10.1016/j.talanta.2013.09.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2343) PDF downloads(187) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint