Citation: | TAI Surigala, LI Yong-chun, ZHOU Wen-hui, WANG Yong-liang, CHEN Guo-dong, SU Rilige, ZHANG Xiang. Effect of Fluorine on Human Health in High-fluorine Areas in Yuanzhou District, Guyuan City, Ningxia Autonomous Region[J]. Rock and Mineral Analysis, 2021, 40(6): 919-929. doi: 10.15898/j.cnki.11-2131/td.202109080119 |
In recent years, with the improvement of people's quality of life, people pay more and more attention to health, and thus endemic fluorosis attracts more and more attention. While paying attention to the analysis of the fluorine pollution source and research on exposure pathways, it is also necessary to carry out health risk evaluations of fluorine exposure pathways. According to the survey, the fluorine content in the surface soil of Pengbao Town, Yuanzhou District, and Guyuan City is higher than the local background value.
To investigate the effect of fluorine on human health.
The health risk assessment model recommended by the US Environmental Protection Agency was used to assess the human health risk. According to the actual situation of endemic diseases caused by excessive fluorine, the samples of surface soil, stratum rocks, crops and groundwater in Pengbao Town, Yuanzhou District, and Guyuan City were collected. The related elements were analyzed by inductively coupled plasma-optical emission spectrometry, atomic fluorescence spectrometry and other analytical methods to study the influence of excessive fluorine on human health in Pengbao Town of Yuanzhou District, and Guyuan City.
The evaluation results showed that the health risk index (HQ) of fluorine exposure pathways in cereals and vegetables was less than 1, and there was no non-carcinogenic risk. The main way of exposure risk of local fluorine was drinking groundwater, and the related health risk index (HQ) was more than 1, which indicated that drinking groundwater with excessive fluorine may have potential non-carcinogenic risk. The annual total health risk was 1.69×10-8, which was lower than the maximum acceptable annual health risk level of 5.0×10-5 recommended by the International Commission for Radiological Protection (ICRP).
Based on the results of the fluorine health risk assessment, it is proposed that the safety of drinking water in this area needs more attention.
[1] | 桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286 doi: 10.3969/j.issn.0254-5357.2008.04.010 Gui J Y, Han Z T, Zhang X Y, et al. Speciation analysis of fluorine in soil samples[J]. Rock and Mineral Analysis, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010 |
[2] | 涂成龙, 何令令, 崔丽峰, 等. 氟的环境地球化学行为及其对生态环境的影响[J]. 应用生态学报, 2019, 39(1): 21-29. Tu C L, He L L, Cui L F, et al. Environmental and geochemical behaviors of fluorine and its impacts on ecological environment[J]. Chinese Journal of Ecology, 2019, 30(1): 21-29. |
[3] |
何令令. 不同地质背景区氟的分布特征与人体氟暴露水平研究[D]. 贵阳: 贵州大学, 2020. |
[4] | 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012 He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in northern China[J]. Geology in China, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012 |
[5] | 莫春雷, 宁立波, 卢天梅. 土壤中氟的垂向分布特征及其与岩性的关系[J]. 环境科学与技术, 2013, 36(10): 49-52. Mo C L, Ning L B, Lu T M. Vertical distribution characteristics of fluorine in the soil and its relationship with lithology[J]. Environmental Science & Technology, 2013, 36(10): 49-52. |
[6] | 何令令, 何守阳, 陈琢玉, 等. 环境中氟污染与人体氟效应[J]. 地球与环境, 2020, 48(1): 87-95. He L L, He S J, Chen J Y, et al. Fluorine pollution in the environment and human fluoride effect[J]. Earth and Environment, 2020, 48(1): 87-95. |
[7] | 吴功建, 李家熙, 硒氟的地球化学特征与人体健康[J]. 岩矿测试, 1996, 15(4): 241-250. Wu G J, Li J X. Geochemical characters of selenium, fluorine and human health[J]. Rock and Mineral Analysis, 1996, 15(4): 241-250. |
[8] |
李静. 重金属和氟的土壤环境质量评价及健康基准的研究[D]. 杭州: 浙江大学, 2020. |
[9] | 张树海, 魏固宁. 宁夏固原市原州区耕地地力评价与测土配方施肥[M]. 银川: 阳光出版社, 2011: 3. Zhang S H, Wei G N. Evaluation of cultivated land fertility and soil testing and fertilization in Yuanzhou District, Guyuan City, Ningxia[M]. Yinchuan: Sunshine Publishing, 2011: 3. |
[10] | 李静, 谢正苗, 徐建明. 我国氟的土壤环境质量指标与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042 Li J, Xie Z M, Xu J M. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042 |
[11] | 杨忠芳, 汤奇峰, 成杭新, 等. 爱恨交织的化学元素[M]. 北京: 地质出版社, 2019: 37. Yang Z F, Tang Q F, Cheng H X, et al. The chemical elements of love and hate[M]. Beijing: Geological Publishing House, 2019: 37. |
[12] | 雷德林, 付学功, 耿红凤, 等. 沧州市高氟水分布规律及环境影响分析[J]. 水资源保护, 2007, 23(2): 43-46. doi: 10.3969/j.issn.1004-6933.2007.02.011 Lei D L, Fu X G, Geng H F, et al. Distribution rules of high fluoride water and its environmental impacts in Cangzhou City[J]. Water Resources Protetion, 2007, 23(2): 43-46. doi: 10.3969/j.issn.1004-6933.2007.02.011 |
[13] | 杨海君, 张海涛, 许云海, 等. 长株潭地区集中式饮用水水源地周边土壤环境质量监测与评价[J]. 水土保持研究, 2018, 25(3): 150-156. Yang H J, Zhang H T, Xu Y H, et al. Monitoring and evaluation of soil environmental quality around the concentrated drinking water source in Changsha Zhuzhou-Xiangtan area[J]. Research of Soil and Water Conservation, 2018, 25(3): 150-156. |
[14] |
陈少贤. 饮水型氟病区改水后儿童健康风险度评价[D]. 广州: 南方医科大学, 2013. |
[15] | 张晓平. 西藏土壤中氟的含量及其分布[J]. 环境科学, 1998(1): 66-68. doi: 10.3321/j.issn:0250-3301.1998.01.017 Zhang X P. Contents of fluorine in soil and their distribution in Tibet[J]. Environmental Science, 1998(1): 66-68. doi: 10.3321/j.issn:0250-3301.1998.01.017 |
[16] | 吴淑岱. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Wu S D. Chinese soil element background value[M]. Beijing: China Environmental Press, 1990. |
[17] | US EPA. Available information on assessment exposure from pesticides in food[R]. US Environmental Protection Agency Office of Pesticide Programs, 2000. |
[18] | 黄磊, 李鹏程, 刘白薇. 长江三角洲地区地下水污染健康风险评价[J]. 安全与环境工程, 2008, 15(2): 26-29. doi: 10.3969/j.issn.1671-1556.2008.02.007 Huang L, Li P C, Liu B W. Health risk assessment of pollution in groundwater-A case study in Changjiang Delta[J]. Safety and Environmental Engineering, 2008, 15(2): 26-29. doi: 10.3969/j.issn.1671-1556.2008.02.007 |
[19] |
向全永. 环境中氟对居民健康影响的危险评价[D]. 上海: 复旦大学, 2004. |
[20] |
黄珊. 重金属污染土壤风险评价及化学淋洗研究[D]. 重庆: 重庆大学, 2013. |
[21] | 沈丽峰, 王文义. 临汾市尧都区氟离子分布状况及形成原因[J]. 水资源保护, 2005, 21(5): 76-78. Shen L F, Wang W Y. Distribution of fluorin ion in Yaodu District of Linfen City and causes of formation[J]. Water Resources Protection, 2005, 21(5): 76-78. |
[22] | 焦有, 宝德俊, 尹川芬. 氟的土壤地球化学[J]. 土壤通报, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013 Jiao Y, Bao D J, Yin C F. Geochemistry of fluorine[J]. Chinese Journal of Soil Science, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013 |
[23] | 刘征原, 郝瑞彬. 氟的环境地球化学特征及生物效应[J]. 唐山师范学院学报, 2007, 29(2): 34-36. doi: 10.3969/j.issn.1009-9115.2007.02.013 Liu Z Y, Hao R B. Environmental geochemistry characteristics of fluorine and its biological effects[J]. Journal of Tangshan Teachers College, 2007, 29(2): 34-36. doi: 10.3969/j.issn.1009-9115.2007.02.013 |
[24] | 杨金燕, 苟敏. 中国土壤氟污染研究现状[J]. 生态环境学报, 2017, 26(3): 506-513. Yang J Y, Gou M. The research status of fluorine contamination in soils of China[J]. Ecology and Environmental Sciences, 2017, 26(3): 506-513. |
[25] | 杨忠芳, 成杭新, 奚小环, 等. 区域生态地球化学评价思路及建议[J]. 地质通报, 2005, 24(8): 687-693. Yang Z F, Cheng H X, Xi X H, et al. Regional ecolopical geochemical assessment: Ideas and praspects[J]. Geological Bulletin of China, 2005, 24(8): 687-693. |
[26] | 邵宗臣, 陈家坊. 土壤和氧化铁对氟化物的吸附和解吸[J]. 地质学报, 1986, 23(3): 236-242. Shao Z C, Chen J F. Adsorption and desorption of fluoride by some soils and iron oxides[J]. Acta Pedologica Sinica, 1986, 23(3): 236-242. |
[27] | 万红友, 黎成厚, 师会勤, 等. 几种土壤的氟吸附特性研究[J]. 农业环境科学学报, 2003, 22(3): 329-332. Wan H Y, Li C H, Shi H Q, et al. Study on adsorption characters of fluorine in several soils[J]. Journal of Agro-Environment Science, 2003, 22(3): 329-332. |
[28] | 何志润. 宁夏清水河流域氟化物(F-)的分布特征及其影响因素研究[D]. 银川: 宁夏大学, 2020. He Z R. Study on the distribution characteristics and influencing factors of fluoride (F-) in Oingshui River Basin of Ningxia[D]. Yinchuan: Ningxia University, 2020. |
[29] | Mondal D, Gupta S. Fluoride hydrogeochemistry in alluvia-laquifer: An implication to chemical weathering and ion-exchange phenomena[J]. Environmental Earth Sciences, 2015, 73(7): 3537-3554. |
[30] | 张惠英, 宋琦如, 赵海萍, 等. 宁夏农村居民膳食结构及营养状况调查分析[J]. 宁夏医学院学报, 2005, 27(2): 104-106. Zhang H Y, Song Q R, Zhao H P, et al. Analysis of dietary structure and nutrition state in rural area of Ningxia[J]. Joural of Ningxia Medical College, 2005, 27(2): 104-106. |
[31] |
郭晋燕. 吉兰泰沙漠盆地地下水环境特征及高氟区饮用水安全风险控制[D]. 西安: 长安大学, 2014. |
[32] | 赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central-southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. |
Distribution map of samples in the study area
Geochemical map of fluorine in the study area
Relationship between fluorine and other elements
Changes of fluorine content in vertical profile of soil
Comparison of fluorine content in different formations