Citation: | YE Man, LI Jing, MA Yifei, KE Yan, LI Xiaogui. Rapid Determination of Sulfur in Nickel-Lead-Zinc Ore by High-frequency Infrared Carbon and Sulfur Analyzer[J]. Rock and Mineral Analysis, 2022, 41(4): 680-687. doi: 10.15898/j.cnki.11-2131/td.202108270109 |
High-frequency infrared carbon and sulfur analyzer can be used to rapidly analyze the sulfur content in different ores with good stability. However, the analysis is greatly affected by the flux type, oxidation temperature and time for various sulfur contents and sample types.
To expand the detection range of sulfur and improve the detection efficiency.
A high-frequency infrared carbon and sulfur analyzer was used to study the influence of experimental conditions on the analysis results. By optimizing the sample weight, the amount of flux, and the analysis time, a method for determination of sulfur with a content of 0.74% to 32.0% in ore samples was established.
The optimized conditions were 2.8L/min oxygen flow, 45s analysis time, sample weight of 0.0400g, 0.50g pure iron and 2.0g pure tungsten as flux. The detection limit of the method verified by national standard material was 0.185%, and the limit of quantification was 0.739%. The linear correlation coefficient of calibration curve was better than 0.9995, the relative standard deviations were less than 3% (n=11) and the relative errors were less than 2%. The relative errors were all less than the allowance limit for the ores analysis of relative error obtained in accordance with DZ/T 0130—2006. The actual samples of the laboratory were determined by this method and the traditional iodine combustion method. The absolute error of the measured values between the two methods was less than 0.5%, with an extremely significant linear relationship (R2=0.9995), indicating good agreement between the two methods.
The method has high precision and low relative error. The detection limit, precision and accuracy of the established method meet the analytical requirements of the ores.
[1] | 陈薇. 硫化铅锌矿选矿工程设计特征分析[J]. 现代矿业, 2021(3): 114-117. Chen W. Analysis on design characteristics of beneficiation engineering of sulfide lead-zinc ore[J]. Modern Mining, 2021(3): 114-117. |
[2] | 韩洁. ICP-AES法测定金属矿石中的铜、铅、锌含量研究[J]. 世界有色金属, 2019(20): 185-186. doi: 10.3969/j.issn.1002-5065.2019.20.104 Han J. Determination of copper, lead and zinc in metal ores by ICP-AES[J]. World Nonferrous Metal, 2019(20): 185-186. doi: 10.3969/j.issn.1002-5065.2019.20.104 |
[3] | 罗继锋, 王莹, 祁雨凡, 等. 电感耦合等离子体发射光谱法快速测定铜铅锌矿石中的硫[J]. 世界有色金属, 2016(10): 160-163. Luo J F, Wang Y, Qi Y F, et al. Rapid determination of sulfur in copper lead zinc ores by inductively coupled plasma atomic emission spectrometry[J]. World Nonferrous Metal, 2016(10): 160-163. |
[4] | Eksteen J J, Oraby E A, Nguyen V. Leaching and ion exchange based recovery of nickel and cobalt from a low grade, serpentine-rich sulfide ore using an alkaline glycine lixiviant system[J]. Minerals Engineering, 2020, 145: 106073. doi: 10.1016/j.mineng.2019.106073 |
[5] | 钟华, 刘凤君, 聂梅影, 等. 高频燃烧红外吸收法测定石灰石和白云石中硫[J]. 冶金分析, 2017, 37(9): 33-38. Zhong H, Liu F J, Nie M Y, et al. Determination of sulfur in limestone and dolomite by high frequency furnace combustion infrared absorption method[J]. Metallurgical Analysis, 2017, 37(9): 33-38. |
[6] | 杨旭龙. 高频红外碳硫仪测定土壤中硫的方法优化[J]. 化学工程师, 2021(3): 76-78. Yang X L. Optimization of the method of high-frequency infrared carbon-sulfur analyzer for determining sulfur in soil[J]. Chemical Engineer, 2021(3): 76-78. |
[7] | 龚仓, 付桂花, 黄艳波. 高频燃烧-红外碳硫仪测定岩心钻探样品中碳硫[J]. 黄金, 2016, 37(12): 77-80. doi: 10.11792/hj20161219 Gong C, Fu G H, Huang Y B. Determination of carbon and sulfur in drilling core samples by high frequency combustion-infrared carbon and sulfur analyzer[J]. Gold, 2016, 37(12): 77-80. doi: 10.11792/hj20161219 |
[8] | 许刚. X射线荧光光谱与碳硫仪联用测定土壤样品中的硫[J]. 化学与粘合, 2019, 41(6): 486-488. doi: 10.3969/j.issn.1001-0017.2019.06.022 Xu G. Determination of sulfur in soil samples by the X-ray fluorescence spectrometry and carbon sulfur analyzer[J]. Chemistry and Adhesion, 2019, 41(6): 486-488. doi: 10.3969/j.issn.1001-0017.2019.06.022 |
[9] | 耶曼, 张华, 李湘, 等. 高频红外碳硫仪测定土壤、水系沉积物和矿石中的硫[J]. 化学分析计量, 2021, 30(6): 48-51. Ye M, Zhang H, Li X, et al. Determination of sulfur in soil, stream sediment and ore by high frequency infrared carbon sulfur meter[J]. Chemical Analysis and Meterage, 2021, 30(6): 48-51. |
[10] | 殷陶刚, 窦向丽, 张旺强, 等. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量[J]. 岩矿测试, 2020, 39(4): 631-638. Yin T G, Dou X L, Zhang W Q, et al. Determination of organic matter content in farm land soil by high frequency infrared carbon-sulfur analyzer[J]. Rock and Mineral Analysis, 2020, 39(4): 631-638. |
[11] | 欧阳泉根, 李晓燕, 白静梅, 等. 盐酸预处理-高频燃烧红外吸收法测定铀岩石中有机碳[J]. 冶金分析, 2020, 40(2): 18-23. Ouyang Q G, Li X Y, Bai J M, et al. Determination of organic carbon in uranium-bearing rock by high frequency combustion infrared absorption with hydro-chloric acid pretreatment[J]. Metallurgical Analysis, 2020, 40(2): 18-23. |
[12] | 张庸, 杨丽, 詹秀嫣, 等. 高频燃烧红外吸收法测定镍基高温合金中碳的助熔剂影响探讨[J]. 冶金分析, 2016, 36(1): 52-56. Zhang Y, Yang L, Zhan X Y, et al. Influence of flux on the determination of carbon in nickel-based superalloy by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2016, 36(1): 52-56. |
[13] | 殷艺丹, 李晖, 张健康, 等. 高频燃烧红外吸收光谱法测定高纯铝粉中碳含量[J]. 中国无机分析化学, 2021, 11(1): 68-72. Yin Y D, Liu H, Zhang J K, et al. Determination of carbon in high purity aluminum powder by high-frequency combustion infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 68-72. |
[14] | 张亚菲, 李啸寅. 红外碳硫仪在地质矿物元素含量测定中的应用[J]. 世界有色金属, 2021(4): 207-208. Zhang Y F, Li X Y. Application of infrared carbon sulfur analyzer in the determination of elements in geological minerals[J]. World Nonferrous Metal, 2021(4): 207-208. |
[15] | 杨小莉, 杨小丽, 曾美云, 等. 高频燃烧红外吸收法测定铜铅锌矿石中硫[J]. 冶金分析, 2020, 40(3): 44-50. Yang X L, Yang X L, Zeng M Y, et al. Determination of sulfur in copper-lead-zinc ore by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2020, 40(3): 44-50. |
[16] | 黄启华, 徐志强, 杨玮玮. 高频红外碳硫仪测定重晶石和黄铁矿中的硫[J]. 岩矿测试, 2017, 36(2): 130-135. Huang Q H, Xu Z Q, Yang W W. Determination of sulfur in barite and pyrite by high frequency infrared carbon-sulfur spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135. |
[17] | 张鑫. 高频燃烧红外吸收光谱法测定铀矿石中的硫[J]. 湿法冶金, 2017, 36(2): 156-160. Zhang X. Determination of sulfur in uranium ore by high frequency combustion infrared absorption spectroscopy[J]. Hydrometallurgy of China, 2017, 36(2): 156-160. |
[18] | 周富强, 刘松, 罗天林. 高频燃烧红外吸收法测定矿产品中硫[J]. 冶金分析, 2016, 36(11): 46-52. Zhou F Q, Liu S, Luo T L. Determination of sulfur content in mineral products by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2016, 36(11): 46-52. |
[19] | 王宝玲. 高频红外吸收法快速测定硫精矿中高含量硫[J]. 冶金分析, 2013, 33(8): 52-54. Wang B L. High frequency infrared absorption method for rapid determination of high-content sulfur in sulfur concentrate[J]. Metallurgical Analysis, 2013, 33(8): 52-54. |
[20] | 吕新明, 孙振泽, 王东, 等. 高频燃烧-红外吸收光谱法同时测定铬铁矿石中碳和硫含量[J]. 中国无机分析化学, 2018, 8(3): 19-22. Lyu X M, Sun Z Z, Wang D, et al. Simultaneous determination of carbon and sulfur in chromium ores by high frequency combustion-infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3): 19-22. |
[21] | 方雅琴, 贾正勋, 于晓琪, 等. 助熔剂对高频红外碳硫仪分析结果的影响分析[J]. 山东化工, 2021, 50(14): 118-120, 123. Fang Y Q, Jia Z X, Yu X Q, et al. Analysis of the influence of flux on the analysis results of high frequency infrared carbon sulfur analyzer[J]. Shandong Chemical Industry, 2021, 50(14): 118-120, 123. |
[22] | 郭飞飞, 万双, 魏中凯, 等. 无水硫酸钠校准-高频燃烧红外吸收法测定铜精矿中高含量硫[J]. 冶金分析, 2015, 35(10): 73-76. Guo F F, Wan S, Wei Z K, et al. Determination of high content sulfur in copper concentrate by high frequency combustion-infrared absorption method with anhydrous sodium sulfate calibration[J]. Metallurgical Analysis, 2015, 35(10): 73-76. |
[23] | 李帅. LECO-高频红外碳硫仪测定铁矿石中硫[J]. 山东化工, 2019, 48(24): 58-59. Li S. Determination of sulfur in iron ore by LECO-high frequency infrared carbon sulfur analyzer[J]. Shandong Chemical Industry, 2019, 48(24): 58-59. |
[24] | 张彦甫, 蒋晓光, 韩峰. 高频燃烧红外吸收法测定高硫铜磁铁矿中硫含量[J]. 冶金分析, 2015, 35(6): 44-48. Zhang Y F, Jiang X G, Han F. Determination of sulfur in high sulfur copper magnetite by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2015, 35(6): 44-48. |
[25] | 王小松, 陈曦, 王小强. 高频燃烧-红外吸收光谱法测定钼矿石和镍矿石中的高含量硫[J]. 岩矿测试, 2013, 32(4): 581-585. Wang X S, Chen X, Wang X Q, et al. Determination of high content sulfur in molybdenum ore and nickel ore using high frequency combustion-infrared absorption spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4): 581-585. |
[26] | 陈伟锐. 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128. Chen W R. Improvement of experimental conditions for the determination of sulfur in soil and stream sediments by high-frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2019, 38(1): 123-128. |
[27] | 于汀汀, 王玮, 许俊玉, 等. 红外碳硫仪测定矿石中高含量硫[J]. 分析试验室, 2016, 35(6): 695-699. Yu T T, Wang W, Xu J Y, et al. Determination of high-content sulfur in ore by IR-absorption spectrometer[J]. Chinese Journal of Analysis Laboratory, 2016, 35(6): 695-699. |
[28] | 李杰阳. 全自动红外吸收光谱法测定硫化矿矿石中全硫量[J]. 中国无机分析化学, 2021, 11(2): 40-44. Li J Y. Determination of total sulfur in sulfide ore by automatic infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(2): 40-44. |
[29] | 宾曦, 王娟, 刁正斌. 高频炉燃烧红外吸收法测定钛精矿中硫[J]. 冶金分析, 2020, 40(8): 67-71. Bin X, Wang J, Diao Z B. Determination of sulfur in titanium concentrate by high frequency furnace combustion and infrared absorption method[J]. Metallurgical Analysis, 2020, 40(8): 67-71. |
[30] | 詹会霞, 董亚红, 靳心怡. 红外线吸收法测定铁矿石中硫的准确性研究[J]. 现代科学仪器, 2019(4): 71-74, 83. Zhan H X, Dong Y H, Jin X Y. Study on the accuracy of infrared absorption method for the determination of sulfur in iron ore[J]. Modern Scientific Instruments, 2019(4): 71-74, 83. |
Results of sulfur content with different sample weights