Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 4
Article Contents

SHI Youchang, CHEN Guiren, ZHAO Mengsheng, LYU Zhenlong, YANG Jinguo. Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663-672. doi: 10.15898/j.cnki.11-2131/td.202108200104
Citation: SHI Youchang, CHEN Guiren, ZHAO Mengsheng, LYU Zhenlong, YANG Jinguo. Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(4): 663-672. doi: 10.15898/j.cnki.11-2131/td.202108200104

Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry

  • BACKGROUND

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) and combustion-infrared absorption spectrometry are the most widely used methods to measure sulfur content in geological samples. The ICP-OES method has high sensitivity and good stability, but it is greatly affected by sample pretreatment and matrix interference. Combustion-infrared absorption spectrometry is convenient and efficient, but due to the interference of crystal water infrared absorption, the analysis of samples with low sulfur content has poor stability.

    OBJECTIVES

    To study the application scope of the two methods in geological sample analysis.

    METHODS

    The sulfur content of samples was determined by ICP-OES and combustion-infrared absorption spectrometry. The detection limit, detection range, precision, accuracy and analysis efficiency of the two methods was compared in order to study and understand the performance of the two methods in sulfur measurement of geological samples.

    RESULTS

    The best test condition of combustion-infrared absorption spectrometry was determined thus: optimal sample weight of 0.0500g, combustion time of 25s, analysis time of 40s and oxygen analysis flow rate of 4.0L/min. The detection limit of combustion-infrared absorption spectrometry was 10×10-6 and the detection range was 10×10-6-470000×10-6. The accuracy relative standard deviation (RSD) of the method was less than 6% (n=12) and the absolute value of relative error was less than 8%.

    CONCLUSIONS

    For the analysis of low-sulfur samples, ICP-OES method can be used to analyze or compare, and multi-element simultaneous measurement can be determined. Batch samples or samples with a complex matrix can be analyzed by combustion-infrared absorption spectrometry, which is more convenient and efficient.

  • 加载中
  • [1] 张世文. 燃烧碘量法测定硫常见问题的分析与讨论[J]. 新疆有色金属, 2014, 40(2): 130-131.

    Google Scholar

    Zhang S W. Analysis and discussion of common problems in sulfur determination by combustion iodine method[J]. Xinjiang Nonferrous Metals, 2014, 40(2): 130-131.

    Google Scholar

    [2] 王嘉鸿. 燃烧-碘量法测定硫[J]. 新疆有色金属, 2017, 33(3): 93-94.

    Google Scholar

    Wang J H. Determination of sulfur by combustion iodine method[J]. Xinjiang Nonferrous Metals, 2017, 33(3): 93-94.

    Google Scholar

    [3] 马一嘉, 罗冰虹, 谭凯馨. 高温燃烧碘量法测定土壤中总硫含量的方法优化[J]. 中国无机分析化学, 2018, 8(3): 25-28.

    Google Scholar

    Ma Y J, Luo B H, Tan K X. Optimization of method for determination of total in by high temperature combustion iodine method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3): 25-28.

    Google Scholar

    [4] 寇超, 史永波, 钟吕玲. 热分解前处理结合分光光度法快速测定土壤中的硫[J]. 应用化工, 2014, 43(6): 1152-1155.

    Google Scholar

    Kou C, Shi Y B, Zhong L L. Spectrophotometric determination of sulfur in the soil after pyrolysis[J]. Applied Chemical Industry, 2014, 43(6): 1152-1155.

    Google Scholar

    [5] 赵文志, 张填昊, 卢兵, 等. 粉末压片制样-波长色散X射线荧光光谱法测定土壤和水系沉积物中溴氯氟磷硫[J]. 冶金分析, 2021, 41(4): 27-33.

    Google Scholar

    Zhao W Z, Zhang T H, Lu B, et al. Determination of bromine, chlorine, fluorine, phosphorus and sulfur in soil and steam sediment by wavelength dispersive X-ray fluorescence spectrometry with pressed power pellet[J]. Metallurgical Analysis, 2021, 41(4): 27-33.

    Google Scholar

    [6] Gazulla M F, Gómez M P, Orduna M, et al. New methodology for sulfur analysis in geological samples by WD-XRF spectrometry[J]. X-Ray Spectrometry, 2009, 38: 3-8. doi: 10.1002/xrs.1092

    CrossRef Google Scholar

    [7] Oliveira J S S, Picoloto R S, Bizzi C A, et al. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES[J]. Talanta, 2015, 144: 1052-1058. doi: 10.1016/j.talanta.2015.07.060

    CrossRef Google Scholar

    [8] 林敏抒. 微波消解光度法测定土壤硫的方法研究[J]. 杭州师范学院学报(自然科学版), 2002, 1(3): 31-33. doi: 10.3969/j.issn.1674-232X.2002.03.009

    CrossRef Google Scholar

    Lin M S. Study on applicability of microwave digestion in the measurement of soil sulfur[J]. Journal of Hangzhou Teachers College(Natural Science Edition), 2002, 1(3): 31-33. doi: 10.3969/j.issn.1674-232X.2002.03.009

    CrossRef Google Scholar

    [9] 张明杰, 戴雪峰, 陆丁荣, 等. 高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定[J]. 岩矿测试, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011

    CrossRef Google Scholar

    Zhang M J, Dai X F, Lu D R, et al. Rapid determination of carbon and sulfur in farm land soil samples by high frequency-infrared carbon-sulfur analyzer[J]. Rock and Mineral Analysis, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011

    CrossRef Google Scholar

    [10] 莫达松, 刘守廷, 蒋天成, 等. 高频红外碳硫分析仪测定土壤、粘土中的硫[J]. 化学分析计量, 2007, 16(4): 54-55.

    Google Scholar

    Mo D S, Liu S T, Jiang T C, et al. Determination of sulfur in soil and clays by high frequency infrared absorption spectrometer[J]. Chemical Analysis Metrology, 2007, 16(4): 54-55.

    Google Scholar

    [11] 周文树, 房建设. 微波消解-电感耦合等离子体-原子发射光谱法测定剩余污泥中的全硫[J]. 分析仪器, 2008, 8(2): 18-20. doi: 10.3969/j.issn.1001-232X.2008.02.006

    CrossRef Google Scholar

    Zhou W S, Fang J S. Determination of total sulphur in sludge by ICP-AES using microwave digestion[J]. Analytical Instrumentation, 2008, 8(2): 18-20. doi: 10.3969/j.issn.1001-232X.2008.02.006

    CrossRef Google Scholar

    [12] 李冰, 马新荣, 杨红霞, 等. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫[J]. 岩矿测试, 2003, 22(4): 241-247.

    Google Scholar

    Li B, Ma X R, Yang H X, et al. Determination of boron, arsenic and sulfur in geological samples by inductively coupled plasma atomic emission spectrometry with sample treatment by pressurized decomposition[J]. Rock and Mineral Analysis, 2003, 22(4): 241-247.

    Google Scholar

    [13] 刘泽斌, 刘守廷, 蒋天成, 等. 电感耦合等离子体原子发射光谱法测定土壤中全硫、全磷和全钾[J]. 中国土壤与肥料, 2017(4): 147-150.

    Google Scholar

    Liu Z B, Liu S T, Jiang T C, et al. Determination of total sulfur, total phosphorus and total potassium content in the soil by inductively coupled plasma atomic emission spectrometry[J]. Soil and Fertilizer Sciences in China, 2017(4): 147-150.

    Google Scholar

    [14] 张廷忠, 杨希胜. 电感耦合等离子体发射光谱法快速测定土壤中的硼与硫[J]. 甘肃冶金, 2012, 34(3): 105-107.

    Google Scholar

    Zhang T Z, Yang X S. Quick determination of boron and sulfur in soil by ICP[J]. Gansu Metallurgy, 2012, 34(3): 105-107.

    Google Scholar

    [15] 刘攀, 杜米芳, 唐伟, 等. 无机固体样品中硫的测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(8): 984-992.

    Google Scholar

    Liu P, Du M F, Tang W, et al. Recent advances of researches on determination methods for sulfur in inorganic solid samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(8): 984-992.

    Google Scholar

    [16] 王雪枫, 王佳佳. 微波消解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 化学分析计量, 2020, 29(3): 47-50.

    Google Scholar

    Wang X F, Wang J J. Determination of sulfur in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis Metrology, 2020, 29(3): 47-50.

    Google Scholar

    [17] 赵海, 李灵凤. 电热板酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中的硼、砷、硫[J]. 中国资源综合利用, 2020, 38(8): 19-21.

    Google Scholar

    Zhao H, Li L F. Simultaneous determination of boron, arsenic and sulfur in geological samples by acid dissolution of electric heating plate-inductively coupled plasma atomic emission spectrometry[J]. China Resources Comprehensive Utilization, 2020, 38(8): 19-21.

    Google Scholar

    [18] 陈伟锐. 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128.

    Google Scholar

    Chen W R. Improvement of experimental conditions for the determination of sulfur in soil and stream sediments by high-frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2019, 38(1): 123-128.

    Google Scholar

    [19] 袁润蕾. CS878A型高频红外碳硫分析仪测定地质样品中碳、硫[J]. 化学工程师, 2019, 33(9): 31-33.

    Google Scholar

    Yuan R L. Determination of carbon and sulfur in geological samples by CS878A high frequency infrared carbon and sulfur analyzer[J]. Chemical Engineer, 2019, 33(9): 31-33.

    Google Scholar

    [20] 宾曦, 王娟, 刁正斌. 高频炉燃烧红外吸收法测定钛精矿中硫[J]. 冶金分析, 2020, 40(8): 67-71.

    Google Scholar

    Bin X, Wang J, Diao Z B. Determination of sulfur in titanium concentrate by high frequency furnace combustion infrared absorption method[J]. Metallurgical Analysis, 2020, 40(8): 67-71.

    Google Scholar

    [21] 杨小莉, 杨小丽, 曾美云. 等. 高频燃烧红外吸收法测定铜铅锌矿石中硫[J]. 冶金分析, 2020, 40(3): 44-50.

    Google Scholar

    Yang X L, Yang X L, Zeng M Y, et al. Determination of sulfur in copper-lead-zinc ore by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2020, 40(3): 44-50.

    Google Scholar

    [22] 王巧玲, 张志峰, 肖宇, 等. 高频燃烧红外吸收法测定金属矿产品中的硫[J]. 化学分析计量, 2018, 27(4): 89-93.

    Google Scholar

    Wang Q L, Zhang Z F, Xiao Y, et al Determination of sulfur in metallic mineral products by high frequency combustion infrared absorption[J]. Chemical Analysis and Metrology, 2018, 27(4): 89-93.

    Google Scholar

    [23] 黄启华, 徐志强, 杨玮玮. 高频红外碳硫仪测定重晶石和黄铁矿中的硫[J]. 岩矿测试, 2017, 36(2): 130-135.

    Google Scholar

    Huang Q H, Xu Z Q, Yang W W. Determination of sulfur in barite and pyrite by high frequency infrared carbon-sulfur spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135.

    Google Scholar

    [24] 龚仓, 付桂花, 黄艳波. 高频燃烧-红外碳硫仪测定岩心钻探样品中碳硫[J]. 黄金, 2016, 37(12): 77-80.

    Google Scholar

    Gong C, Fu G H, Huang Y B. Determination of carbon and sulfur in drilling core samples by high frequency combustion infrared carbon and sulfur analyzer[J]. Gold, 2016, 37(12): 77-80.

    Google Scholar

    [25] 杨旭龙. 高频红外碳硫仪测定土壤中硫的方法优化[J]. 化学工程师, 2021, 35(3): 76-78, 82.

    Google Scholar

    Yang X L. Optimization of the method of high-frequency infrared carbon-sulfur analyzer for determining sulfur in soil[J]. Chemical Engineer, 2021, 35(3): 76-78, 82.

    Google Scholar

    [26] 许刚. X射线荧光光谱与碳硫仪联用测定土壤样品中的硫[J]. 化学与粘合, 2019, 41(6): 486-488.

    Google Scholar

    Xu G. Determination of sulfur in soil samples by the X-ray fluorescence spectrometry and carbon sulfur analyzer[J]. Adhesion, 2019, 41(6): 486-488.

    Google Scholar

    [27] 耶曼, 张华, 李湘, 等. 高频红外碳硫仪测定土壤、水系沉积物和矿石中的硫[J]. 化学分析计量, 2021, 30(6): 48-51.

    Google Scholar

    Ye M, Zhang H, Li X, et al. Determination of sulfur in soil, stream sediment and ore by high frequency infrared carbon and sulfur analyzer[J]. Chemical Analysis and Metrology, 2021, 30(6): 48-51.

    Google Scholar

    [28] 赵庆令, 李清彩. 电感耦合等离子体发射光谱法同时测定土壤样品中54种组分[J]. 岩矿测试, 2011, 30(1): 75-78.

    Google Scholar

    Zhao Q L, Li Q C. Simultaneous determination of 54 components in soil samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 75-78.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(8)

Article Metrics

Article views(2526) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint