Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 5
Article Contents

ZHANG Hong, GAO Peng-xin, GAO Qing-nan. Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content[J]. Rock and Mineral Analysis, 2021, 40(5): 710-719. doi: 10.15898/j.cnki.11-2131/td.202104190053
Citation: ZHANG Hong, GAO Peng-xin, GAO Qing-nan. Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content[J]. Rock and Mineral Analysis, 2021, 40(5): 710-719. doi: 10.15898/j.cnki.11-2131/td.202104190053

Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content

More Information
  • BACKGROUND

    Quartz is not only an important prospecting indicator of hydrothermal deposits, but also a key factor affecting the evaluation of shale gas reservoir fracturing. It is of great significance to carry out the rapid evaluation of quartz content in field drilling. However, the analysis process of conventional methods (X-ray diffraction method and scanning electron microscope) is relatively long.

    OBJECTIVES

    To establish a rapid and large-scale quantitative evaluation model of quartz based on thermal infrared reflectance.

    METHODS

    Handheld FTIR spectrometer and mineral quantitative analyzer were used to analysis the content and characteristic absorption peak intensity of quartz, from mudstone, sandstone, conglomerate, limestone and dolomite samples in the Qiangtang Basin.

    RESULTS

    The relative depth (D8625, D12640, D14450) of quartz at the three characteristic center wavelength positions of 8625nm, 12640nm and 14450nm can be used to distinguish terrigenous clastic rocks from carbonate rocks. When D8625>0.14 or D12640>0.02 or D14450>0.02, the samples are mainly terrigenous clastic rocks. In addition, three quartz spectral characteristic parameters D8625, D12640, and D14450 all have a high correlation with the quartz content, and the least square method can be used to construct a quartz content evaluation model. Two indicators of goodness of fit (R2) and root mean square error (RMSE) were used to evaluate the accuracy of the three models. Among them, the quartz content estimation model based on D8625 parameters had the highest goodness of fit (R2=0.9237), with the smallest root square error (RMSE=8.51). Based on this, it is believed that the D8625 quartz spectral parameters can be used as the optimal spectral index for evaluating the quartz content.

    CONCLUSIONS

    Based on thermal infrared reflectance spectroscopy technology, a field method for quickly estimating the content of quartz in drilling core has been established, which provides reference for prospecting and exploration of hydrothermal deposits and shale gas exploration and development.

  • 加载中
  • [1] 郭帮杰, 张杰林, 武鼎. 热红外高光谱遥感回归分析定量反演石英含量[J]. 科学技术与工程, 2018, 18(17): 125-130. doi: 10.3969/j.issn.1671-1815.2018.17.021

    CrossRef Google Scholar

    Guo B J, Zhang J L, Wu D. Thermal hyperspectral remote rensing for the quantitative inversion of quartz content by regression analysis[J]. Science Technology and Engineering, 2018, 18(17): 125-130. doi: 10.3969/j.issn.1671-1815.2018.17.021

    CrossRef Google Scholar

    [2] 陈静, 周涛发, 张乐骏, 等. 蚀变岩帽的特征、成因以及在华南的分布探讨[J]. 岩石学报, 2020, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08

    CrossRef Google Scholar

    Chen J, Zhou T F, Zhang L J, et al. A discussion of characteristics, genesis of lithocaps and their distributions in South China[J]. Acta Petrologica Sinica, 2020, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08

    CrossRef Google Scholar

    [3] 崔霄峰, 张宇, 李肖龙. 内蒙古喀喇沁旗安家营子金矿蚀变及其分布研究[J]. 地质与勘探, 2021, 57(1): 1-13. doi: 10.3969/j.issn.1001-1986.2021.01.001

    CrossRef Google Scholar

    Cui X F, Zhang Y, Li X L. Alteration and distribution of Anjiayingzi gold deposit in Harqin Banner, Inner Mongolia[J]. Geology and Exploration, 2021, 57(1): 1-13. doi: 10.3969/j.issn.1001-1986.2021.01.001

    CrossRef Google Scholar

    [4] 金露英, 秦克章, 李光明, 等. 斑岩钼-热液脉状铅锌银矿成矿系统特征、控制因素及勘查指示[J]. 岩石学报, 2020, 36(12): 3813-3839.

    Google Scholar

    Jin L Y, Qin K Z, Li G M, et al. Characteristics, controlling factors and exploration implications of porphyry molybdenum-hydrothermal vein-style lead-zinc-silver metallogenic systems[J]. Acta Petrologica Sinica, 2020, 36(11): 3813-3839.

    Google Scholar

    [5] 孙雨沁, 于学峰, 单伟, 等. 胶东焦家断裂带3000m深部矿化特征及金矿物赋存状态[J]. 地球学报, 2020, 41(6): 919-937.

    Google Scholar

    Sun Y Q, Yu X F, Dan W, et al. Mineralization characteristics and modes of occurrence of gold minerals at the depth of 3000 meters in Jiaojia fault zone, Jiaodong Peninsula[J]. Acta Geoscientia Sinica, 2020, 41(6): 919-937.

    Google Scholar

    [6] 于立栋, 张海微, 张静, 等. 东天山玉峰金矿热液蚀变作用与元素迁移规律[J]. 岩石学报, 2020, 36(5): 1597-1610.

    Google Scholar

    Yu L D, Zhang H W, Zhang J, et al. Hydrothermal alteration and element migration in the Yufeng gold deposit, Eastern Tianshan Orogen[J]. Acta Petrologica Sinica, 2020, 36(5): 1597-1610.

    Google Scholar

    [7] 张海坤, 胡鹏, 姜军胜, 等. 印度尼西亚苏门答腊岛马塔比(Martabe)浅成低温热液型金-银矿床的地质特征与找矿标志[J]. 高校地质学报, 2021, 27(2): 163-171.

    Google Scholar

    Zhang H K, Hu P, Jiang J S, et al. Geological features and prospecting indicators of martabe epithermal Au-Ag deposit, Sumatra, Indonesia[J]. Geological Journal of China Universities, 2021, 27(2): 163-171.

    Google Scholar

    [8] 田兴旺, 胡国艺, 苏桂萍, 等. 川南威远川南威远地区W201井古生界海相页岩矿物特征[J]. 新疆石油地质, 2018, 39(4): 409-415.

    Google Scholar

    Tian X W, Hu G Y, Su G P, et al. Mineralogical characteristics of Paleozoic marine shales in Well W201 of Weiyuan area, Southern Sichuan Basin[J]. Xinjiang Petroleum Geology, 2018, 39(4): 409-415.

    Google Scholar

    [9] 卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465.

    Google Scholar

    Lu L F, Qin J Z, Shen B J, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465.

    Google Scholar

    [10] 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组-龙马溪组为例[J]. 地球科学, 2019, 44(11): 3692-3704.

    Google Scholar

    Sun C X, Nie H K, Liu G X, et al. Quartz type and its control on shale gas enrichment and production: A case study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44(11): 3692-3704.

    Google Scholar

    [11] 郭雯, 董大忠, 李明, 等. 富有机质页岩中石英的成因及对储层品质的指示意义——以四川盆地东南部及周缘龙马溪组龙-1亚段为例[J]. 天然气工业, 2021, 41(2): 65-74.

    Google Scholar

    Guo W, Dong D Z, Li M, et al. Quartz genesis in organic-rich shale and its indicative significance to reservoir quality: A case study on the first submember of the first member of Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(2): 65-74.

    Google Scholar

    [12] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345-368.

    Google Scholar

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its applicati-ion in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345-368.

    Google Scholar

    [13] 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129.

    Google Scholar

    Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129.

    Google Scholar

    [14] 伍月, 迟广成, 刘欣. X射线粉晶衍射法在变粒岩鉴定与分类中的应用[J]. 岩矿测试, 2020, 39(4): 546-554.

    Google Scholar

    Wu Y, Chi G C, Liu X. Application of X-ray powder diffraction method in identification and classification of leptite[J]. Rock and Mineral Analysis, 2020, 39(4): 546-554.

    Google Scholar

    [15] 闫柏琨, 王润生, 甘甫平, 等. 热红外遥感信息岩矿信息提取研究进展[J]. 地球科学进展, 2005, 20(10): 1116-1126. doi: 10.3321/j.issn:1001-8166.2005.10.011

    CrossRef Google Scholar

    Yan B K, Wang R S, Gan F P. Progresses in minerals information extraction using thermal remote sensing[J]. Advances in Earth Science, 2005, 20(10): 1116-1126. doi: 10.3321/j.issn:1001-8166.2005.10.011

    CrossRef Google Scholar

    [16] 代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    CrossRef Google Scholar

    Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geologica Sinica, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

    CrossRef Google Scholar

    [17] Van der Meer F D, Van der Werff H M F, Van der Ruitenbeek F J K, et al. Multi-and hyperspectral geologic remote sensing: A review[J]. International Journal of Applied Earth Observation and Geoinfor-mation, 2012, 14(1): 112-128. doi: 10.1016/j.jag.2011.08.002

    CrossRef Google Scholar

    [18] Arne D, House E, Pontual S, et al. Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia[J]. Australian Journal of Earth Sciences, 2016, 63(8): 1003-1025.

    Google Scholar

    [19] Cudahy T. Mineral mapping for exploration: An Australian journey of evolving spectral sensing technologies and industry collaboration[J]. Geosciences, 2016, 6(4): 2076-3263.

    Google Scholar

    [20] Laukamp C, Rodger A, LeGras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 1-37.

    Google Scholar

    [21] Lampinen H M, Laukamp C, Occhipinti S A, et al. Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit Capricorn Orogen, western Australia[J]. Ore Geology Reviews, 2019, 104: 436-461. doi: 10.1016/j.oregeorev.2018.11.004

    CrossRef Google Scholar

    [22] Tappert M C, Rivard B, Giles D, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J]. Ore Geology Reviews, 2013, 53: 26-38. doi: 10.1016/j.oregeorev.2012.12.006

    CrossRef Google Scholar

    [23] 史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943.

    Google Scholar

    Shi W X, Yi J J, Wang H, et al. Study on the characteristics of the infrared spectrum and the alteration zoning of drill core in the Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943.

    Google Scholar

    [24] Bastero C F, Lagmay A M F A. Estimating SiO2 content of lava depositsin the humid tropics using remotely sensed imagery[J]. Journal of Volcanology and Geothermal Research, 2006, 151(4): 357-364. doi: 10.1016/j.jvolgeores.2005.09.012

    CrossRef Google Scholar

    [25] Guo B J, hang J L. Airborne hyperspectral remote sensing technology for polymetallic ore and uranium deposits exploration in East Junggar[J]. Acta Geolagica Sinica (Engish Edition), 2014, 88(Supplement 2): 1347-1348.

    Google Scholar

    [26] 杜锦锦, 王俊虎, 郎朋林. 基于102F实测热红外光谱的富硅类岩石SiO2含量定量反演[J]. 世界核地质科学, 2016, 33(4): 216-222. doi: 10.3969/j.issn.1672-0636.2016.04.005

    CrossRef Google Scholar

    Du J J, Wang J H, Lang P L. Quantitative inversion of SiO2 contents in silicon rich rocks based on measured 102F thermal infrared spectra[J]. World Nuclear Geoscience, 2016, 33(4): 216-222. doi: 10.3969/j.issn.1672-0636.2016.04.005

    CrossRef Google Scholar

    [27] 郭帮杰, 张杰林, 武鼎, 等. 高光谱遥感在硅化带识别中的应用[J]. 科学技术与工程, 2017, 17(3): 154-158. doi: 10.3969/j.issn.1671-1815.2007.04.044

    CrossRef Google Scholar

    Guo B J, Zhang J L, Wu D, et al. Application of hyperspectral remote sensing in silicified zone identification[J]. Science Technology and Engineering, 2007, 11(4): 601-608. doi: 10.3969/j.issn.1671-1815.2007.04.044

    CrossRef Google Scholar

    [28] 刘道飞, 陈圣波, 陈磊, 等. 以SiO2含量为辅助因子的ASTER热红外遥感硅化信息提取[J]. 地球科学——中国地质大学学报, 2015, 40(8): 1396-1402.

    Google Scholar

    Liu D F, Chen S B, Chen L, et al. Silicification information extraction based on the content of SiO2 from ASTER TIR data[J]. Earth Science (Journal of China University of Geosciences), 2015, 40(8): 1396-1402.

    Google Scholar

    [29] 王剑, 付修根, 沈利军, 等. 论羌塘盆地油气勘探前景[J]. 地质论评, 2020, 66(5): 1091-1113.

    Google Scholar

    Wang J, Fu X G, Shen L J, et al. Prospect of the potential of oil and gas resources in Qiangtang Basin, Xizang (Tibet)[J]. Geological Review, 2020, 66(5): 1091-1113.

    Google Scholar

    [30] 回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134-144.

    Google Scholar

    Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134-144.

    Google Scholar

    [31] 张弘, 高卿楠, 郭东旭, 等. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究[J]. 矿物岩石, 2021, 41(1): 25-31.

    Google Scholar

    Zhang H, Gao Q N, Guo D X, et al. Characteristics of thermal infrared reflectance spectra and quantitative inversion of lithium element in granite pegmatite type lithium deposit[J]. Mineralogy and Petrology, 2011, 41(1): 25-31.

    Google Scholar

    [32] 李俊键, 成宝洋, 刘仁静, 等. 基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J]. 石油学报, 2019, 40(5): 594-603.

    Google Scholar

    Li J J, Cheng B Y, Liu R J, et al. Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core[J]. Acta Petrolei Sinica, 2019, 40(5): 594-603.

    Google Scholar

    [33] 吕文超, 杨志军, 周永章, 等. 钦杭结合带南段和寮铅锌多金属矿床石英的谱学特征及其指示意义[J]. 光谱学与光谱分析, 2013, 33(5): 1374-1378. doi: 10.3964/j.issn.1000-0593(2013)05-1374-05

    CrossRef Google Scholar

    Lv W C, Yang Z J, Zhou Y Z, et al. Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1374-1378. doi: 10.3964/j.issn.1000-0593(2013)05-1374-05

    CrossRef Google Scholar

    [34] 尤金凤, 邢立新, 潘军, 等. 油砂光谱特性及其含油率遥感估算研究[J]. 光谱学与光谱分析, 2015, 35(4): 1025-1029. doi: 10.3964/j.issn.1000-0593(2015)04-1025-05

    CrossRef Google Scholar

    You J F, Xing L X, Pan J, et al. Research on oil sands spectral characteristics and oil content by remote sensing estimation[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 1025-1029. doi: 10.3964/j.issn.1000-0593(2015)04-1025-05

    CrossRef Google Scholar

    [35] 樊瑞雪, 邢立新, 潘军, 等. 油砂的光谱特性及其遥感应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 603-610.

    Google Scholar

    Fan R X, Xing L X, Pan J, et al. Oil sands spectral reflection characteristics and remote sensing application[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 603-610.

    Google Scholar

    [36] 成功, 李嘉璇, 王朝鹏, 等. 离子型稀土矿含量高光谱定量反演研究[J]. 光谱学与光谱分析, 2019, 39(5): 1571-1578.

    Google Scholar

    Cheng G, Li J X, Wang C P, et al. Study on hyperspectral quantitative inversion of ionic rare earth ore[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1571-1578.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(1339) PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint