Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 1
Article Contents

LI Li-jun, XUE Jing. Determination of 10 Trace Elements in Kaolin by ICP-MS with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22-31. doi: 10.15898/j.cnki.11-2131/td.202103240042
Citation: LI Li-jun, XUE Jing. Determination of 10 Trace Elements in Kaolin by ICP-MS with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22-31. doi: 10.15898/j.cnki.11-2131/td.202103240042

Determination of 10 Trace Elements in Kaolin by ICP-MS with Microwave Digestion

More Information
  • BACKGROUND

    As an important aluminosilicate, trace element contents affect the performance of the product. The kaolin standard substances GBW03121, GBW03122, GBW03122a lack the recommended values of ten elements such as arsenic and antimony. Similar rock standard materials were used for monitoring the determination procedure, but the accurate results of the kaolin samples may be affected.

    OBJECTIVES

    To establish a method for accurate determination of 10 trace elements in kaolin sample such as arsenic and antimony.

    METHODS

    With microwave digestion technology, the nitrate-hydrofluoric acid system and nitrate-hydrofluoric-peroxide system were compared for the procedural heating conditions and dissolution time of microwave digestion. Interference factors of the inductively coupled plasma mass spectrum were also investigated.

    RESULTS

    The detection limits of 10 elements were 0.01-0.09mg/kg, and measurement limits were 0.03-0.30mg/kg. The accuracy and precision of the method were directly verified by using rock reference materials. The element recovery was between 90.9% and 103.2%, and the relative standard deviation (RSD) was between 1.2% and 5.8%. At the same time, a comprehensive evaluation of the uncertainty of the method was carried out, and the method was proved to be accurate and reliable.

    CONCLUSIONS

    This method has little acid dosage, shortens the measurement time, and reduces the damage on the environment and human, making it suitable for the batch analysis of 10 trace elements in kaolin samples. The method also provides a reference for the determination of the certified values of 10 trace elements such as As and Sb in the national standard material of kaolin.

  • 加载中
  • [1] Elanchezhiyan S D, Perumal K, Karthik R, et al. Magnetic kaolinite immobilized chitosan beads for the removal of Pb(Ⅱ) and Cd(Ⅱ) ions from an aqueous environment[J]. Carbohydrate Polymers, 2021, 261: 117892. doi: 10.1016/j.carbpol.2021.117892

    CrossRef Google Scholar

    [2] Khudyakov A Y, Vashchenko S V, Bayul K V, et al. Kaolin raw material briquetting for lump chamotte production[J]. Refractories and Industrial Ceramics, 2018, 59(4): 333-337. doi: 10.1007/s11148-018-0231-3

    CrossRef Google Scholar

    [3] Baioumy H, Farahat M, Arifin M H, et al. Hypogene kaolin deposits from felsic intrusive rocks (Peninsular Malaysia) with special reference to rare earth elements and stable isotopes geochemistry[J]. Geosciences Journal, 2021, doi:10.1007/s12303-021-0003-9.

    CrossRef Google Scholar

    [4] Tohid N, Rahim M. Geochemical and industrial properties of the Kejal kaolin deposit, NW Iran[J]. Turkish Journal of Earth Sciences, 2020, 29: 325-346. doi: 10.3906/yer-1906-7

    CrossRef Google Scholar

    [5] Mahmoud E A, Alberto L G, Djordje M, et al. Flow and tableting behaviors of some Egyptian kaolin powders as potential pharmaceutical excipients[J]. Minerals, 2019, 10: 23.

    Google Scholar

    [6] 郑智慷, 王家松, 张楠, 等. 微波消解-原子荧光光谱法测定岩石和土壤中锑[J]. 理化检验(化学分册), 2019, 55(8): 960-962.

    Google Scholar

    Zheng Z K, Wang J S, Zhang N, et al. AFS determination of antimony in rock and soil with microwave digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(8): 960-962.

    Google Scholar

    [7] 刘佩佩. 高效液相色谱-氢化物发生-原子荧光光谱联用技术测定土壤中砷的形态[D]. 武汉: 武汉科技大学, 2017.

    Google Scholar

    Liu P P. High performance liquid chromatography-hydride generation-atomic fluorescence spectrometry determine forms of arsenic in the soil[D]. Wuhan: Wuhan University of Technology, 2017.

    Google Scholar

    [8] 赵小学, 王芳, 刘丹, 等. 沸水浴消解-原子荧光光谱法测定土壤及水系沉积物中5种元素[J]. 理化检验(化学分册), 2020, 56(12): 1307-1312.

    Google Scholar

    Zhao X X, Wang F, Liu D, et al. AFS determination of 5 elements in soil and sediment with digestion of boiling water bath[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(12): 1307-1312.

    Google Scholar

    [9] Terrance H, Phil L. 微波等离子体原子发射光谱法(MP-AES)测定地质样品中的常量和微量元素[J]. 中国无机分析化学, 2015, 5(1): 41-44. doi: 10.3969/j.issn.2095-1035.2015.01.012

    CrossRef Google Scholar

    Terrance H, Phil L. Determination of major and minor elements contained in geological samples by microwave plasma-atomic emission spectrometer (MP-AES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1): 41-44. doi: 10.3969/j.issn.2095-1035.2015.01.012

    CrossRef Google Scholar

    [10] 庞文品, 邓云江, 周小林. 电感耦合等离子体原子发射光谱法测定高岭土中7种微量组分[J]. 理化检验(化学分册), 2018, 54(5): 559-562.

    Google Scholar

    Pang W P, Deng Y J, Zhou X L. ICP-AES determination of 7 trace components in kaolin clay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(5): 559-562.

    Google Scholar

    [11] 亢德华, 于媛君, 李颖, 等. 熔融制样-X射线荧光光谱法测定黑刚玉中6种组分[J]. 冶金分析, 2021, 41(2): 40-43.

    Google Scholar

    Kang D H, Yu Y J, Li Y, et al. Determination of six components in black corundum by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2021, 41(2): 40-43.

    Google Scholar

    [12] 袁静, 刘建坤, 郑荣华, 等. 高能偏振能量色散X射线荧光光谱仪特性研究及地质样品中主微量元素分析[J]. 岩矿测试, 2020, 39(6): 816-827.

    Google Scholar

    Yuan J, Liu J K, Zheng R H, et al. Studies on characteristics of high-energy polarized energy-dispersive X-ray fluorescence spectrometer and determination of major and trace elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(6): 816-827.

    Google Scholar

    [13] 黄杏娇, 张学友, 曹小勇, 等. 电感耦合等离子体质谱法测定高纯金中铝、砷、铋、铬、铁、铅、锑、硒、碲、铱痕量元素[J]. 中国无机分析化学, 2021, 11(1): 76-80.

    Google Scholar

    Huang X J, Zhang X Y, Cao X Y, et al. Determination of trace elements in high purity gold by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 76-80.

    Google Scholar

    [14] 彭杨, 吴婧, 巢静波, 等. 土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J]. 环境化学, 2017, 36(1): 175-182.

    Google Scholar

    Peng Y, Wu J, Chao J B, et al. A method for the accurate determination of 14 metal elements in soils/sediments by ICP-MS[J]. Environmental Chemistry, 2017, 36(1): 175-182.

    Google Scholar

    [15] 何永昱, 曹玉嫔, 覃东庙, 等. 磁免疫结合单颗粒模式ICP-MS同时测定乳腺癌病人血清中的CEA与CA15-3[J]. 分析测试学报, 2021, 40(6): 965-972. doi: 10.3969/j.issn.1004-4957.2021.06.025

    CrossRef Google Scholar

    He Y Y, Cao Y P, Qin D M, et al. Detection of carcinoembryonic antigen and carbohydrate antigen 15-3 in human breast cancer serum using single particle mode ICP-MS coupled with magnetic immunoassay[J]. Journal of Instrumental Analysis, 2021, 40(6): 965-972. doi: 10.3969/j.issn.1004-4957.2021.06.025

    CrossRef Google Scholar

    [16] 黄冬根, 周文斌, 刘雷, 等. ICP-MS法测定高岭土中微量成分及杂质元素的研究[J]. 光谱学与光谱分析, 2009, 29(2): 504-508. doi: 10.3964/j.issn.1000-0593(2009)02-0504-05

    CrossRef Google Scholar

    Huang D G, Zhou W B, Liu L, et al. Study on the determination of trace composition and impurity elements in kaolin with ICP-MS[J]. Spectroscopy and Spectral Analysis, 2009, 29(2): 504-508. doi: 10.3964/j.issn.1000-0593(2009)02-0504-05

    CrossRef Google Scholar

    [17] 罗勉, 王贵超, 罗芝雅, 等. ICP-OES对高岭土中多种杂质元素的标准加入测定法研究[J]. 湖南有色金属, 2020, 36(6): 70-74.

    Google Scholar

    Luo M, Wang G C, Luo Z Y, et al. Research of standard addition method for various impurity elements in kaolin by ICP-OES[J]. Hunan Nonferrous Metals, 2020, 36(6): 70-74.

    Google Scholar

    [18] 马生凤, 温宏利, 马新荣, 等. 四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J]. 矿物岩石地球化学通报, 2011, 30(1): 65-72. doi: 10.3969/j.issn.1007-2802.2011.01.010

    CrossRef Google Scholar

    Ma S F, Wen H L, Ma X R, et al. Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 65-72. doi: 10.3969/j.issn.1007-2802.2011.01.010

    CrossRef Google Scholar

    [19] 张亚峰, 冯俊, 唐杰, 等. 基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J]. 质谱学报, 2016, 37(2): 186-192.

    Google Scholar

    Zhang Y F, Feng J, Tang J, et al. Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(2): 186-192.

    Google Scholar

    [20] 张晨芳, 李墨, 杨颖, 等. 密闭压力酸溶电感耦合等离子体质谱法测定岩浆岩中稀有元素[J]. 分析科学学报, 2018, 34(6): 801-805.

    Google Scholar

    Zhang C F, Li M, Yang Y, et al. Quantification of rare elements in magmatic rocks by inductively coupled plasma-mass spectrometry after pressurized acid digestion[J]. Journal of Analytical Science, 2018, 34(6): 801-805.

    Google Scholar

    [21] 王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315.

    Google Scholar

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315.

    Google Scholar

    [22] 王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76.

    Google Scholar

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76.

    Google Scholar

    [23] 王佩佩, 李肖, 宋伟娇. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    CrossRef Google Scholar

    Wang P P, Li X, Song W J. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J]. Journal of Instrumental Analysis, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    CrossRef Google Scholar

    [24] 王金砖, 张玉洁, 伏荣进, 等. 校准曲线和观测方式对电感耦合等离子体原子发射光谱法测定不锈钢中镍、铬和锰的影响[J]. 冶金分析, 2015, 35(1): 45-49.

    Google Scholar

    Wang J Z, Zhang Y J, Fu R J, et al. Effect of calibration curve and observation way on the determination of nickel, chromium and manganese in stainless steel by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(1): 45-49.

    Google Scholar

    [25] 荀颖怡. 不同熔(溶)矿方法测定水系沉积物中稀土元素的研究与比较分析[D]. 长春: 吉林大学, 2014.

    Google Scholar

    Xun Y Y. Comparative analysis of the REEs measurement using different melting (dissolved) methods in stream sediment[D]. Changchun: Jilin University, 2014.

    Google Scholar

    [26] 吴佳伦, 罗霜, 李思思, 等. 微波消解/石墨消解-ICP-MS测定土壤中的多种重金属[J]. 中国测试, 2021, 47(5): 58-63.

    Google Scholar

    Wu J L, Luo X, Li S S, et al. Microwave digestion/graphite digestion-ICP-MS determination of multiple heavy metals in soil[J]. China Measurement & Test, 2021, 47(5): 58-63.

    Google Scholar

    [27] 张祎玮, 蒋俊平, 李浩, 等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

    CrossRef Google Scholar

    Zhang Y W, Jiang J P, Li H, et al. Optimization of microwave digestion inductively coupled plasma spectrometry for determination of rare earth elements in soil[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

    CrossRef Google Scholar

    [28] 《岩石矿物分析》编委会. 岩石矿物分析(第四版第一分册)[M]. 北京: 地质出版社, 2011.

    Google Scholar

    The editorial committee of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅰ)[M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    [29] 胡圣虹, 林守麟, 刘勇, 等. 等离子体质谱法测定地质样品中痕量稀土元素的基体效应及多原子离子干扰的校正研究[J]. 高等学校化学学报, 2000, 21(3): 368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

    CrossRef Google Scholar

    Hu S H, Lin S L, Liu Y, et al. Studies on the calibration of matrix effects and polyatomic ion for rare earth elements in geochemical samples by ICP-MS[J]. Chemical Journal of Chinese Universities, 2000, 21(3): 368-372. doi: 10.3321/j.issn:0251-0790.2000.03.009

    CrossRef Google Scholar

    [30] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402.

    Google Scholar

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.

    Google Scholar

    [31] 赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102.

    Google Scholar

    Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102.

    Google Scholar

    [32] 李诚, 任利锋, 张泽华. 熔融法-X射线荧光光谱测定金红石矿石中18种主次量元素[J]. 环境化学, 2021, 40(5): 1623-1627.

    Google Scholar

    Li C, Ren L F, Zhang Z H. Determination of 18 elements in nutile ore by XRF of fusion sample preparation technique[J]. Environmental Chemistry, 2021, 40(5): 1623-1627.

    Google Scholar

    [33] Gazulla M F, Rodrigo S, Vicente M, et al. Methodology for the determination of minor and trace elements in petroleum cokes by wavelength-dispersive X-ray fluorescence (WD-XRF)[J]. X-Ray Spectrometry, 2010, 39(5): 321-327. doi: 10.1002/xrs.1270

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(3494) PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint