Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 5
Article Contents

WEI Shuang, WANG Jia-song, XU Tie-min, FANG Peng-da, WANG Li-qiang, WANG Na. Preparation of Sepiolite Reference Material for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 763-773. doi: 10.15898/j.cnki.11-2131/td.202102090022
Citation: WEI Shuang, WANG Jia-song, XU Tie-min, FANG Peng-da, WANG Li-qiang, WANG Na. Preparation of Sepiolite Reference Material for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 763-773. doi: 10.15898/j.cnki.11-2131/td.202102090022

Preparation of Sepiolite Reference Material for Chemical Composition Analysis

More Information
  • BACKGROUND

    Sepiolite is a very important non-metallic mineral, which is widely used in aviation, animal husbandry, the chemical industry, environmental protection and other fields. Sepiolite is in great demand and needs a lot of analysis and testing. However, the existing sepiolite reference materials are inadequate and do not satisfy the needs of sepiolite composition analysis. Furthermore, there are no sepiolite reference materials in China, making it necessary to develop one.

    OBJECTIVES

    To prepare a reference material for composition analysis of sepiolite whose certified value components cover as many elements as possible.

    METHODS

    Sepiolite samples were collected from Xiangtan, Hunan Province. The samples were subjected to primary crushing, coarse-grain sieving, inactivation, fine grinding and fine grain sieving. After passing the initial inspection, samples were bottled and numbered. Random samples were taken for homogeneity test, stability test. 24 components were selected for homogeneity and stability test.

    RESULTS

    The results showed that the RSD of 20 components were less than 3%, and the F value of the variance test was less than the critical value of the list[F0.05(29, 60)=1.65], indicating that the homogeneity of the reference material was good. During the investigation period, the contents of 24 components had no significant change, indicating that the standard material was stable. Nine laboratories cooperated with traditional chemical analysis methods and modern instrumental analysis methods to determine the value. The final values were 63 components, covering major, trace and all rare earth elements. The contents of characteristic components MgO and LOI were 18% and 8.55%, respectively. These two components form a certain ladder with the existing reference materials, which can better satisfy the requirements of sepiolite composition analysis.

    CONCLUSIONS

    The developed sepiolite reference material can be used as the quality control standards for geological prospecting, geochemical investigation and testing of geological and mineral products, as well as for other industries to analyze similar materials. Moreover, in the process of developing the reference material, improvements and developments to the new methods will provide technical support for the subsequent development of the sepiolite reference material.

  • 加载中
  • [1] 李文光. 海泡石粘土矿床的成矿地质特征及找矿远景[J]. 化工矿产地质, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006

    CrossRef Google Scholar

    Li W G. Minerogenetic geological features of sepiolite clay ore deposit and its prospect of ore-search[J]. Geological Institute for Chemical Minerals, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006

    CrossRef Google Scholar

    [2] 周永兴. 从专利变化看国内海泡石应用趋势[J]. 中国非金属矿工业导刊, 2020(3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001

    CrossRef Google Scholar

    Zhou Y X. Application trend of sepiolite in China from patent changes[J]. China Non-metallic Mining Industry Herald, 2020(3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001

    CrossRef Google Scholar

    [3] 陈镇, 向明辉, 蒋鹏, 等. 低品位海泡石的酸热改性及对吸附性能的影响[J]. 湖南工程学院学报, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015

    CrossRef Google Scholar

    Chen Z, Xiang M H, Jiang P, et al. Modification of low grade sepiolite and its effect on adsorption properties[J]. Journal of Hunan Institute of Engineering, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015

    CrossRef Google Scholar

    [4] Abad-Valle P, Álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J]. Geoderma, 2016, 280: 57-66. doi: 10.1016/j.geoderma.2016.06.015

    CrossRef Google Scholar

    [5] Xu Y, Liang X F, Xu Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2

    CrossRef Google Scholar

    [6] Zhou J, Fan Z Y, Tian Q, et al. Removal of heavy metal ions by porous sepiolite-based membrane[J]. Micro & Nano Letters, 2020, 15(13): 903-906.

    Google Scholar

    [7] Xie S, Wang L, Xu Y M, et al. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J]. Science of The Total Environment, doi. org/10.1016/j. scitotenv. 2020.140009. doi: 10.1016/j.scitotenv.2020.140009

    CrossRef Google Scholar

    [8] Song N, Hursthouse A, Mclellan I, et al. Treatment of en-vironmental contamination using sepiolite: Current approaches and future potential[J]. Environmental Geochemistry and Health, 2021, 4: 2679-2697. doi: 10.1007/s10653-020-00705-0

    CrossRef Google Scholar

    [9] 孟雪芬, 冯辉霞, 张斌, 等. 海泡石的改性方法及其应用研究进展[J]. 应用化工, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039

    CrossRef Google Scholar

    Meng X F, Feng H X, Zhang B, et al. Progress in modification method and application of sepiolite[J]. Applied Chemical Industry, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039

    CrossRef Google Scholar

    [10] 温鑫, 谷晋川, 魏春梅, 等. 腐殖酸-海泡石复合钝化剂的制备及其对Cd污染土壤的修复[J]. 化工环保, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010

    CrossRef Google Scholar

    Wen X, Gu J C, Wei C M, et al. Preparation of humic acid-sepiolite composite passivator and its remediation effect on Cd contaminated soil[J]. Environment Protection of Chemical Industry, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010

    CrossRef Google Scholar

    [11] 曹璟, 陈镇, 张小刚, 等. 改性海泡石在焦化废水处理中的应用[J]. 广东化工, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071

    CrossRef Google Scholar

    Cao J, Chen Z, Zhang X G, et al. Application of modified sepiolite in coking wastewater treatment[J]. Guangdong Chemical Industry, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071

    CrossRef Google Scholar

    [12] Wang F, Ding D P, Hao M, et al. Novel fabrication of a sepiolite supported cobalt-based catalyst via a coprecipitation-reduction method[J]. Applied Clay Science, 2020, 200: 105909.

    Google Scholar

    [13] 汤敏, 汪形艳, 贺玥莹, 等. 三维花球状BiOCl/海泡石的制备及其在可见光催化降解双酚A中的应用[J]. 现代化工, 2018, 38(10): 131-136.

    Google Scholar

    Tang M, Wang X Y, He Y Y, et al. Preparation of 3D flower-like BiOCl/sepiolite and its application in visible light photocatalytic degradation of bisphenol A[J]. Modern Chemical Industry, 2018, 38(10): 131-136.

    Google Scholar

    [14] Dong N, Ye Q, Chen M Y, et al. Sodium-treated sepiolite-supported transition metal (Cu, Fe, Ni, Mn, or Co) catalysts for HCHO oxidation[J]. Chinese Journal of Catalysis, 2020, 41: 1734-1744. doi: 10.1016/S1872-2067(20)63599-9

    CrossRef Google Scholar

    [15] 唐永翔, 董晓晗, 韩焱, 等. 用于环己烷氧化的Co3O4/海泡石催化剂的制备和第一性原理研究[J]. 常州大学学报(自然科学版), 2020, 30(2): 30-36.

    Google Scholar

    Tang Y X, Dong X H, Han Y, et al. Preparation and first principle study of Co3O4/sepiolite catalyst for cyclohexane oxidation[J]. Journal of Changzhou University (Natural Science Edition), 2020, 30(2): 30-36.

    Google Scholar

    [16] 胡安, 袁鸽, 张宁, 等. 黏土矿物在电池领域的应用研究进展[J]. 新能源进展, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009

    CrossRef Google Scholar

    Hu A, Yuan G, Zhang N, et al. Advances in the application of clay minerals in the field of batteries[J]. Advances in New and Renewable Energy, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009

    CrossRef Google Scholar

    [17] 王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016

    CrossRef Google Scholar

    Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulletin of China, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016

    CrossRef Google Scholar

    [18] Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 333-350. doi: 10.1111/j.1751-908X.2015.00392.x

    CrossRef Google Scholar

    [19] Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 599-601. doi: 10.1111/ggr.12152

    CrossRef Google Scholar

    [20] 方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 地质调查与研究, 2021, 44(2): 35-39.

    Google Scholar

    Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. Geological Survey and Research, 2021, 44(2): 35-39.

    Google Scholar

    [21] 王祎亚, 张中, 王毅民, 等. X射线荧光光谱在标准物质和标准方法研究中的应用评介[J]. 冶金分析, 2020, 40(10): 99-110.

    Google Scholar

    Wang Y Y, Zhang Z, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in geological reference materials and standard methods[J]. Metallurgical Analysis, 2020, 40(10): 99-110.

    Google Scholar

    [22] 王雪莹, 王飞飞, 孙效轩, 等. 钛矿石与钛精矿X射线荧光光谱分析与化学分析用标准样品的研制[J]. 中国无机分析化学, 2018, 8(1): 21-28.

    Google Scholar

    Wang X Y, Wang F F, Sun X X, et al. Development of certified reference materials of titanium ore and ilmenite concentrate for X-ray fluorescence spectrometry & chemical analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 21-28.

    Google Scholar

    [23] 隆英兰, 王景凤, 韩俊丽, 等. 电感耦合等离子体原子发射光谱法同时测定多金属矿石中铜、铅、锌、银[J]. 化学分析计量, 2020, 29(6): 38-41.

    Google Scholar

    Long Y L, Wang J F, Han J L, et al. Simultaneous determination of copper, lead, zinc and silver in polymetallic ores by inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(6): 38-41.

    Google Scholar

    [24] 鲁忍. 微波消解-电感耦合等离子体原子发射光谱法测定钨矿石中钨[J]. 化学分析计量, 2020, 29(6): 105-108.

    Google Scholar

    Lu R. Determination of tungsten in tungsten ore by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chemical Analysis and Meterage, 2020, 29(6): 105-108.

    Google Scholar

    [25] Skrzypek G, Sadler R. A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials[J]. Rapid Communications in Mass Spectrometry, 2011, 25(11): 1625-1630.

    Google Scholar

    [26] 徐鹏, 孙亚莉. Carius管密封溶样-等离子体质谱法测定环境样品中镓、锗、砷、硒、镉、锡、锑、碲、汞、铅和铋[J]. 分析化学, 2010, 38(4): 581-584.

    Google Scholar

    Xu P, Sun Y L. Determination of Ga, Ge, As, Se, Cd, Sn, Sb, Te, Hg, Pb and Bi in environmental samples by inductively coupled plasma mass spectrometry combined with Carius tube digestion[J]. Chinese Journal of Analytical Chemistry, 2010, 38(4): 581-584.

    Google Scholar

    [27] 辛文彩, 林学辉, 徐磊. 电感耦合等离子体质谱法测定海洋沉积物中34种痕量元素[J]. 理化检验(化学分册), 2012, 48(4): 459-464.

    Google Scholar

    Xin W C, Lin X H, Xu L. ICP-MS determination of 34 trace elements in marine sediments[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(4): 459-464.

    Google Scholar

    [28] Low F, Zhang L. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES[J]. Talanta, 2012, 101: 346-352.

    Google Scholar

    [29] 张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649.

    Google Scholar

    Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649.

    Google Scholar

    [30] 王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397.

    Google Scholar

    Wang L Q, Wang J S, Xu T M, et al. Determination of major elements in sepoilite by inductively coupled plasma-optical emission spectrometry with opening acid dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397.

    Google Scholar

    [31] 郑智慷, 王家松, 曾江萍, 等. 微波消解-原子荧光光谱法测定化探样品中的砷和锑[J]. 地质调查与研究, 2019, 42(4): 263-266.

    Google Scholar

    Zheng Z K, Wang J S, Zeng J P. Determination of arsenic and antimony in geochemical samples by microwave digestion-atomic fluorescence spectrometry[J]. Geological Survey and Research, 2019, 42(4): 263-266.

    Google Scholar

    [32] 王力强, 魏双, 王家松, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫[J]. 地质调查与研究, 2019, 42(4): 259-262.

    Google Scholar

    Wang L Q, Wei S, Wang J S. Determination of Al, Mn, K, Na, Ca, Mg, S in polymetallic ores by open acid solution-inductively coupled plasma emission spectro-metry[J]. Geological Survey and Research, 2019, 42(4): 259-262.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article Metrics

Article views(2280) PDF downloads(85) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint