Citation: | WEI Shuang, WANG Jia-song, XU Tie-min, FANG Peng-da, WANG Li-qiang, WANG Na. Preparation of Sepiolite Reference Material for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 763-773. doi: 10.15898/j.cnki.11-2131/td.202102090022 |
Sepiolite is a very important non-metallic mineral, which is widely used in aviation, animal husbandry, the chemical industry, environmental protection and other fields. Sepiolite is in great demand and needs a lot of analysis and testing. However, the existing sepiolite reference materials are inadequate and do not satisfy the needs of sepiolite composition analysis. Furthermore, there are no sepiolite reference materials in China, making it necessary to develop one.
To prepare a reference material for composition analysis of sepiolite whose certified value components cover as many elements as possible.
Sepiolite samples were collected from Xiangtan, Hunan Province. The samples were subjected to primary crushing, coarse-grain sieving, inactivation, fine grinding and fine grain sieving. After passing the initial inspection, samples were bottled and numbered. Random samples were taken for homogeneity test, stability test. 24 components were selected for homogeneity and stability test.
The results showed that the RSD of 20 components were less than 3%, and the F value of the variance test was less than the critical value of the list[F0.05(29, 60)=1.65], indicating that the homogeneity of the reference material was good. During the investigation period, the contents of 24 components had no significant change, indicating that the standard material was stable. Nine laboratories cooperated with traditional chemical analysis methods and modern instrumental analysis methods to determine the value. The final values were 63 components, covering major, trace and all rare earth elements. The contents of characteristic components MgO and LOI were 18% and 8.55%, respectively. These two components form a certain ladder with the existing reference materials, which can better satisfy the requirements of sepiolite composition analysis.
The developed sepiolite reference material can be used as the quality control standards for geological prospecting, geochemical investigation and testing of geological and mineral products, as well as for other industries to analyze similar materials. Moreover, in the process of developing the reference material, improvements and developments to the new methods will provide technical support for the subsequent development of the sepiolite reference material.
[1] | 李文光. 海泡石粘土矿床的成矿地质特征及找矿远景[J]. 化工矿产地质, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006 Li W G. Minerogenetic geological features of sepiolite clay ore deposit and its prospect of ore-search[J]. Geological Institute for Chemical Minerals, 2001, 23(3): 158-164. doi: 10.3969/j.issn.1006-5296.2001.03.006 |
[2] | 周永兴. 从专利变化看国内海泡石应用趋势[J]. 中国非金属矿工业导刊, 2020(3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001 Zhou Y X. Application trend of sepiolite in China from patent changes[J]. China Non-metallic Mining Industry Herald, 2020(3): 1-5, 53. doi: 10.3969/j.issn.1007-9386.2020.03.001 |
[3] | 陈镇, 向明辉, 蒋鹏, 等. 低品位海泡石的酸热改性及对吸附性能的影响[J]. 湖南工程学院学报, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015 Chen Z, Xiang M H, Jiang P, et al. Modification of low grade sepiolite and its effect on adsorption properties[J]. Journal of Hunan Institute of Engineering, 2017, 27(4): 59-63. doi: 10.3969/j.issn.1671-119X.2017.04.015 |
[4] | Abad-Valle P, Álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J]. Geoderma, 2016, 280: 57-66. doi: 10.1016/j.geoderma.2016.06.015 |
[5] | Xu Y, Liang X F, Xu Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2 |
[6] | Zhou J, Fan Z Y, Tian Q, et al. Removal of heavy metal ions by porous sepiolite-based membrane[J]. Micro & Nano Letters, 2020, 15(13): 903-906. |
[7] | Xie S, Wang L, Xu Y M, et al. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep)[J]. Science of The Total Environment, doi. org/10.1016/j. scitotenv. 2020.140009. doi: 10.1016/j.scitotenv.2020.140009 |
[8] | Song N, Hursthouse A, Mclellan I, et al. Treatment of en-vironmental contamination using sepiolite: Current approaches and future potential[J]. Environmental Geochemistry and Health, 2021, 4: 2679-2697. doi: 10.1007/s10653-020-00705-0 |
[9] | 孟雪芬, 冯辉霞, 张斌, 等. 海泡石的改性方法及其应用研究进展[J]. 应用化工, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039 Meng X F, Feng H X, Zhang B, et al. Progress in modification method and application of sepiolite[J]. Applied Chemical Industry, 2020, 49(9): 2319-2323. doi: 10.3969/j.issn.1671-3206.2020.09.039 |
[10] | 温鑫, 谷晋川, 魏春梅, 等. 腐殖酸-海泡石复合钝化剂的制备及其对Cd污染土壤的修复[J]. 化工环保, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010 Wen X, Gu J C, Wei C M, et al. Preparation of humic acid-sepiolite composite passivator and its remediation effect on Cd contaminated soil[J]. Environment Protection of Chemical Industry, 2020, 40(5): 518-523. doi: 10.3969/j.issn.1006-1878.2020.05.010 |
[11] | 曹璟, 陈镇, 张小刚, 等. 改性海泡石在焦化废水处理中的应用[J]. 广东化工, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071 Cao J, Chen Z, Zhang X G, et al. Application of modified sepiolite in coking wastewater treatment[J]. Guangdong Chemical Industry, 2020, 47(3): 151-152, 155. doi: 10.3969/j.issn.1007-1865.2020.03.071 |
[12] | Wang F, Ding D P, Hao M, et al. Novel fabrication of a sepiolite supported cobalt-based catalyst via a coprecipitation-reduction method[J]. Applied Clay Science, 2020, 200: 105909. |
[13] | 汤敏, 汪形艳, 贺玥莹, 等. 三维花球状BiOCl/海泡石的制备及其在可见光催化降解双酚A中的应用[J]. 现代化工, 2018, 38(10): 131-136. Tang M, Wang X Y, He Y Y, et al. Preparation of 3D flower-like BiOCl/sepiolite and its application in visible light photocatalytic degradation of bisphenol A[J]. Modern Chemical Industry, 2018, 38(10): 131-136. |
[14] | Dong N, Ye Q, Chen M Y, et al. Sodium-treated sepiolite-supported transition metal (Cu, Fe, Ni, Mn, or Co) catalysts for HCHO oxidation[J]. Chinese Journal of Catalysis, 2020, 41: 1734-1744. doi: 10.1016/S1872-2067(20)63599-9 |
[15] | 唐永翔, 董晓晗, 韩焱, 等. 用于环己烷氧化的Co3O4/海泡石催化剂的制备和第一性原理研究[J]. 常州大学学报(自然科学版), 2020, 30(2): 30-36. Tang Y X, Dong X H, Han Y, et al. Preparation and first principle study of Co3O4/sepiolite catalyst for cyclohexane oxidation[J]. Journal of Changzhou University (Natural Science Edition), 2020, 30(2): 30-36. |
[16] | 胡安, 袁鸽, 张宁, 等. 黏土矿物在电池领域的应用研究进展[J]. 新能源进展, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009 Hu A, Yuan G, Zhang N, et al. Advances in the application of clay minerals in the field of batteries[J]. Advances in New and Renewable Energy, 2020, 8(1): 56-61. doi: 10.3969/j.issn.2095-560X.2020.01.009 |
[17] | 王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016 Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulletin of China, 2010, 29(7): 1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016 |
[18] | Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 333-350. doi: 10.1111/j.1751-908X.2015.00392.x |
[19] | Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 599-601. doi: 10.1111/ggr.12152 |
[20] | 方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 地质调查与研究, 2021, 44(2): 35-39. Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. Geological Survey and Research, 2021, 44(2): 35-39. |
[21] | 王祎亚, 张中, 王毅民, 等. X射线荧光光谱在标准物质和标准方法研究中的应用评介[J]. 冶金分析, 2020, 40(10): 99-110. Wang Y Y, Zhang Z, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in geological reference materials and standard methods[J]. Metallurgical Analysis, 2020, 40(10): 99-110. |
[22] | 王雪莹, 王飞飞, 孙效轩, 等. 钛矿石与钛精矿X射线荧光光谱分析与化学分析用标准样品的研制[J]. 中国无机分析化学, 2018, 8(1): 21-28. Wang X Y, Wang F F, Sun X X, et al. Development of certified reference materials of titanium ore and ilmenite concentrate for X-ray fluorescence spectrometry & chemical analysis[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1): 21-28. |
[23] | 隆英兰, 王景凤, 韩俊丽, 等. 电感耦合等离子体原子发射光谱法同时测定多金属矿石中铜、铅、锌、银[J]. 化学分析计量, 2020, 29(6): 38-41. Long Y L, Wang J F, Han J L, et al. Simultaneous determination of copper, lead, zinc and silver in polymetallic ores by inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(6): 38-41. |
[24] | 鲁忍. 微波消解-电感耦合等离子体原子发射光谱法测定钨矿石中钨[J]. 化学分析计量, 2020, 29(6): 105-108. Lu R. Determination of tungsten in tungsten ore by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chemical Analysis and Meterage, 2020, 29(6): 105-108. |
[25] | Skrzypek G, Sadler R. A strategy for selection of reference materials in stable oxygen isotope analyses of solid materials[J]. Rapid Communications in Mass Spectrometry, 2011, 25(11): 1625-1630. |
[26] | 徐鹏, 孙亚莉. Carius管密封溶样-等离子体质谱法测定环境样品中镓、锗、砷、硒、镉、锡、锑、碲、汞、铅和铋[J]. 分析化学, 2010, 38(4): 581-584. Xu P, Sun Y L. Determination of Ga, Ge, As, Se, Cd, Sn, Sb, Te, Hg, Pb and Bi in environmental samples by inductively coupled plasma mass spectrometry combined with Carius tube digestion[J]. Chinese Journal of Analytical Chemistry, 2010, 38(4): 581-584. |
[27] | 辛文彩, 林学辉, 徐磊. 电感耦合等离子体质谱法测定海洋沉积物中34种痕量元素[J]. 理化检验(化学分册), 2012, 48(4): 459-464. Xin W C, Lin X H, Xu L. ICP-MS determination of 34 trace elements in marine sediments[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(4): 459-464. |
[28] | Low F, Zhang L. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES[J]. Talanta, 2012, 101: 346-352. |
[29] | 张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649. Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649. |
[30] | 王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397. Wang L Q, Wang J S, Xu T M, et al. Determination of major elements in sepoilite by inductively coupled plasma-optical emission spectrometry with opening acid dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397. |
[31] | 郑智慷, 王家松, 曾江萍, 等. 微波消解-原子荧光光谱法测定化探样品中的砷和锑[J]. 地质调查与研究, 2019, 42(4): 263-266. Zheng Z K, Wang J S, Zeng J P. Determination of arsenic and antimony in geochemical samples by microwave digestion-atomic fluorescence spectrometry[J]. Geological Survey and Research, 2019, 42(4): 263-266. |
[32] | 王力强, 魏双, 王家松, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫[J]. 地质调查与研究, 2019, 42(4): 259-262. Wang L Q, Wei S, Wang J S. Determination of Al, Mn, K, Na, Ca, Mg, S in polymetallic ores by open acid solution-inductively coupled plasma emission spectro-metry[J]. Geological Survey and Research, 2019, 42(4): 259-262. |