Citation: | GAO Juan-qin, YU Yang, WANG Deng-hong, WANG Wei, DAI Hong-zhang, YU Feng, QIN Yan. Composition and Spatial Distribution Characteristics of Hydrogen and Oxygen Isotopes of Surface Water in Altay, Xinjiang Province[J]. Rock and Mineral Analysis, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007 |
Hydrogen and oxygen isotopes can be used to identify water sources and trace water cycles and have been used in hydrogeochemistry since the 1950s. Studies have been carried out on stable isotopes of atmospheric precipitation, rivers and lakes in Xinjiang.However, the research on hydrogen and oxygen isotopes of waters in Altay is scarce, except for atmospheric precipitation. Researchers found that the rainfall in the Altai Mountains during the warm season (April-October) increased significantly from 1959 to 2014. Due to this background of climate condition changes, it is meaningful to study the hydrogen and oxygen isotope compositions of various types of water bodies in the Altay region, at the southern foot of the Altai Mountains.
To obtain the basic data of hydrogen and oxygen isotopic composition of water in Altay and reveal their spatial distribution characteristics.
Hydrogen and oxygen isotope compositions of river water, lake water, spring water, snow water, and water from a mine pit in the Altay region of Xinjiang were determined by liquid water laser isotope analyzer (LGR DT100, America). The dissolved oxygen (DO), TDS, T, and pH of the water samples were measured using the German WTW3430 multi-parameter water quality analyzer. The concentrations of Na+, K+, Ca2+, and Mg2+ were analyzed by inductively coupled plasma-optical emission spectrometry (PE8300, PerkinElmer, USA). The concentrations of HCO3- and CO32- were determined by alkali titration method. Cl- and SO42- concentrations were analyzed by ion chromatography method.
The results showed that the ranges of δ18O and δD of the waters in the Altay area were from -15.4‰ to -5‰ and from -121‰ to -49‰, respectively. The hydrogen and oxygen isotope content of various types of water in the Altay region were significantly different. The δ18O and δD values of river waters varied from -15.4‰ to -11.5‰ and from -114‰ to -100‰, respectively, and the deuterium excess parameter varied from -12.4‰ to 12.4‰. The δ18O and δD of Ulungur Lake were much higher than those of surface rivers, with an average value of -5.95‰ and -78.5‰, respectively. The deuterium excess parameter of Ulungur Lake was much lower than those of surface rivers, with an average value of -30.9‰. The δ18O value (-14.9‰ and -11.8‰) of groundwater was similar to that of surface rivers, but δD (-114‰ and -121‰) was slightly higher than that of surface rivers, indicating that groundwater was supplied by surface rivers but may be affected by water-rock reactions. The δ18O and δD values of snow water and the water from a mine pit were -11.8‰ and -90‰, -11.6‰ and -106‰, respectively. The fitting lines for hydrogen and oxygen isotopes of the Irtysh River and Ulungur River were δD=1.7297δ18O-83.879 and δD=1.986δ18O-76.5, respectively. Surface rivers were remarkably different from the global and Urumqi atmospheric precipitation lines, indicating that apart from atmospheric precipitation, surface rivers were also recharged by glacier meltwater, and underwent evaporation and isotope fractionation during the water cycle.Due to the temperature and latitude effect of hydrogen and oxygen isotopes, the δD and δ18O showed significant positive correlation relationships with T, TDS, and the molar concentration of major ions such as Na+, K+, Ca2+, Cl-, and SO42-, also showing a significant negative correlation with the latitude of the sampling sites and DO (P < 0.05, n=32).
The hydrogen and oxygen isotope composition characteristics obtained in this study provide basic data for the stable isotope research of various types of water bodies in the Altay area.The precipitation in Altay has increased significantly in recent decades. Due to this background, it is indeed necessary to continue to conduct long-term and in-depth systematic research on the composition of hydrogen and oxygen isotopes in Altay's atmospheric precipitation and other types of water bodies.
[1] | 丁悌平. 氢氧同位素地球化学[M]. 北京: 地质出版社, 1980: 116. Ding T P. Hydrogen and oxygen isotope geochemistry[M]. Beijing: Geological Publishing House, 1980: 116. |
[2] | Yi P, Wan C, Jin H, et al. Hydrological insights from hydrogen and oxygen isotopes in source area of the Yellow River, east-northern part of Qinghai-Tibet Plateau[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(1): 131-144. doi: 10.1007/s10967-018-5864-7 |
[3] | Jeelani G, Deshpande R D, Galkowski M, et al. Isotopic composition of daily precipitation along the southern foothills of the Himalayas: Impact of marine and continental sources of atmospheric moisture[J]. Atmospheric Chemistry & Physics, 2018, 18(12): 8789-8805. |
[4] | 刘广山, 黄奕普, 金德秋, 等. 南极雪的氢氧同位素组成[J]. 厦门大学学报(自然科学版), 2001, 40(3): 664-668. Liu G S, Huang Y P, Jin D Q, et al. Deuterium and 18O contents and distributions in Antarctic snow[J]. Journal of Xiamen University (Natural Science), 2002, 40(3): 664-668. |
[5] | Dansgaard W. The abundance of O18 in atmospheric water and water vapor[J]. Tellus, 1953, 5(4): 461-469. doi: 10.3402/tellusa.v5i4.8697 |
[6] | 章申, 于维新, 张青莲, 等. 我国西藏南部珠穆朗玛峰地区冰雪水中氘和重氧的分布[J]. 中国科学: 数学, 1973(4): 430-433. Zhang S, Yu W X, Zhang Q L, et al. Distribution of deuterium and heavy oxygen in ice and snow waters in the Everest Region of southern Tibet in China[J]. Science China: Mathematics, 1973(4): 430-433. |
[7] | 柳鉴容, 宋献方, 袁国富, 等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22): 3521-3531. Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2009, 54(22): 3521-3531. |
[8] | 高建飞, 丁悌平, 罗续荣, 等. 黄河水氢、氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 2011, 85(4): 596-602. Gao J F, Ding T P, Luo X R, et al. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 2011, 85(4): 596-602. |
[9] | 丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005 Ding T P, Gao J F, Shi G Y, et al. Spatial and temporal variations of H and O isotope compositions of the Yangtze River water and their environmental implications[J]. Acta Geologica Sinica, 2013, 87(5): 661-676. doi: 10.3969/j.issn.0001-5717.2013.05.005 |
[10] | 孙芳强, 尹立河, 马洪云, 等. 新疆三工河流域土壤水δD和δ18O特征及其补给来源[J]. 干旱区地理, 2016, 39(6): 1298-1304. Sun F Q, Yin L H, Ma H Y, et al. Features of δD and δ18O and origin of soil water in Sangong River Basin, Xinjiang[J]. Arid Land Geography, 2016, 39(6): 1298-1304. |
[11] | 吴秀杰. 氢氧同位素指示沙漠地下水来源研究——以巴丹吉林沙漠为例[D]. 北京: 中国地质大学(北京), 2018. Wu X J. An investigation on groundwater origination in deserts indicated by hydrogen and oxygen isotopes, taking the Badain Jaran Desert as an example[D]. Beijing: China University of Geosciences (Beijing), 2018. |
[12] | 李晖, 周宏飞. 乌鲁木齐地区大气降水中δD和δ18O的变化特征[J]. 干旱区资源与环境, 2007, 21(9): 46-50. doi: 10.3969/j.issn.1003-7578.2007.09.010 Li H, Zhou H F. Variation characteristics of δD and δ18O stable isotopes in the precipitation of Urumqi[J]. Journal of Arid Land Resources and Environment, 2007, 21(9): 46-50. doi: 10.3969/j.issn.1003-7578.2007.09.010 |
[13] | 李晖, 蒋忠诚, 王月, 等. 新疆地区大气降水中稳定同位素的变化特征[J]. 水土保持研究, 2009, 16(5): 157-161. Li H, Jiang Z C, Wang Y, et al. Variation characteristics of stable isotopes in the precipitation of Xinjiang[J]. Research of Soil and Water Conservation, 2009, 16(5): 157-161. |
[14] | 王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地河水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35. Wang W X, Wang R J, Li W P, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 29-35. |
[15] | 努尔阿米乃姆·阿木克, 麦麦提吐尔逊·艾则孜, 海米提·依米提. 博斯腾湖流域氢氧同位素特征研究[J]. 安徽农业科学, 2016, 44(8): 11-13, 77. doi: 10.3969/j.issn.0517-6611.2016.08.005 Hamuk N, Eziz M, Yimit H. Study on characteristics of hydrogen and oxygen isotope in Bosten Lake Basin[J]. Journal of Anhui Agricultural Sciences, 2016, 44(8): 11-13, 77. doi: 10.3969/j.issn.0517-6611.2016.08.005 |
[16] | 姚俊强, 刘志辉, 郭小云, 等. 呼图壁河流域水体氢氧稳定同位素特征及转化关系[J]. 中国沙漠, 2016, 36(5): 1443-1450. Yao J Q, Liu Z H, Guo X Y, et al. Characteristics of water stable isotopes (18O and 2H) in the Hutubi River Basin, northwestern China[J]. Journal of Desert Research, 2016, 36(5): 1443-1450. |
[17] | 郭小云. 呼图壁河流域不同水体的水化学和稳定同位素特征分析[D]. 乌鲁木齐: 新疆大学, 2016. Guo X Y. Water chemistry and stable isotope characteristics analysis of different water bodies in the Hutubi River Basin[D]. Urumqi: Xinjiang University, 2016. |
[18] | 曾海鳌, 吴敬禄, 刘文, 等. 哈萨克斯坦东部水体氢, 氧同位素和水化学特征[J]. 干旱区地理, 2013, 36(4): 662-668. Zeng H A, Wu J L, Liu W, et al. Characteristics on hydrochemistry and hydrogen, oxygen isotopes of waters in Kazakhstan[J]. Arid Land Geography, 2013, 36(4): 662-668. |
[19] | Natalia M, Tatiana P, Nina K, et al. Influence of atmospheric circulation on precipitation in Altai mountains[J]. Journal of Mountain Science, 2017, 14(1): 46-59. doi: 10.1007/s11629-016-4162-5 |
[20] | 李帅, 李祥余, 何清, 等. 阿勒泰地区近40年的气候变化研究[J]. 干旱区研究, 2006, 23(4): 637-643. Li S, Li X Y, He Q, et al. Study on climate change in Altay Prefecture since recent 40 years[J]. Arid Zone Research, 2006, 23(4): 637-643. |
[21] | 贺斌. 新疆阿勒泰区域水资源总量评价及其预测分析[J]. 能源与节能, 2017(10): 103-104. doi: 10.3969/j.issn.2095-0802.2017.10.051 He B. Total evaluation and predictive analysis of water resources in Altay Region of Xinjiang[J]. Energy and Energy Conservation, 2017(10): 103-104. doi: 10.3969/j.issn.2095-0802.2017.10.051 |
[22] | 雷雨, 龙爱华, 邓铭江, 等. 1926-2009年额尔齐斯河流域中游地区气候变化及其对水资源的影响分析[J]. 冰川冻土, 2012, 34(4): 912-919. Lei Y, Long A H, Deng M J, et al. Analyses of the climate change and its impact on water resources in the middle reaches of Irtysh River during 1926-2009[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 912-919. |
[23] | 王振升, 蒋惠敏. 乌伦古河流域水资源及其特征[J]. 干旱区地理, 2000, 23(2): 123-128. doi: 10.3321/j.issn:1000-6060.2000.02.006 Wang Z S, Jiang H M. Water resources and its features in Ulungur River watershed, Xinjiang[J]. Arid Land Geography, 2000, 23(2): 123-128. doi: 10.3321/j.issn:1000-6060.2000.02.006 |
[24] | 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998. Wang S M, Dou H S. Chinese lakes[M]. Beijing: Science Press, 1998. |
[25] | 吴敬禄, 曾海鳌, 马龙, 等. 新疆主要湖泊水资源及近期变化分析[J]. 第四纪研究, 2012, 32(1): 142-150. doi: 10.3969/j.issn.1001-7410.2012.01.15 Wu J L, Zeng H A, Ma L, et al. Recent changes of selected lake water resources in arid Xinjiang, northwestern China[J]. Quaternary Sciences, 2012, 32(1): 142-150. doi: 10.3969/j.issn.1001-7410.2012.01.15 |
[26] | Tian L D, Yao T, Macclune T, et al. Stable isotopic variations in West China: A consideration of moisture sources[J]. Journal of Geophysical Research, 2007, 112(D10): 1-12. |
[27] | Kong Y L, Wang K, Li J, et al. Stable isotopes of precipitation in China: A consideration of moisture sources[J]. Water, 2019, 11(6): 1239. doi: 10.3390/w11061239 |
[28] | Aizen V B, Aizen E, Fujita K, et al. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia[J]. Journal of Glaciology, 2005, 51(175): 637-654. doi: 10.3189/172756505781829034 |
[29] | Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702 |
[30] | Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993 |
[31] | 尹观, 倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报, 2001, 20(4): 409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057 Yin G, Ni S J. Deuterium excess parameter evolution in ground water[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 409-411. doi: 10.3969/j.issn.1007-2802.2001.04.057 |
[32] | 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254. doi: 10.3969/j.issn.1671-9727.2001.03.006 Yin G, Ni S J, Zhang Q C. Deuterium excess parameter and geohydrology significance-Taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example[J]. Journal of Chengdu University of Technology, 2001, 28(3): 251-254. doi: 10.3969/j.issn.1671-9727.2001.03.006 |
[33] | 尹观, 倪师军, 范晓, 等. 冰雪溶融的同位素效应及氘过量参数演化——以四川稻城水体同位素为例[J]. 地球学报, 2004, 25(2): 157-160. doi: 10.3321/j.issn:1006-3021.2004.02.011 Yin G, Ni S J, Fan X, et al. Isotopic effect and the deuterium excess parameter evolution in ice and snow melting process: A case study of isotopes in the water body of Daocheng, Sichuan Province[J]. Acta Geoscientica Sinica, 2004, 25(2): 157-160. doi: 10.3321/j.issn:1006-3021.2004.02.011 |
[34] | 成玉婷, 李鹏, 徐国策, 等. 丹江流域氢氧同位素变化特征[J]. 水土保持学报, 2014, 28(5): 129-133. Cheng Y T, Li P, Xu G C, et al. Characteristics of hydrogen and oxygen isotopes in Danjiang Watershed[J]. Journal of Soil and Water Conservation, 2014, 28(5): 129-133. |
Map of sampling sites
δD-δ18O diagram of Altay waters
δD-δ18O diagrams of (a) Irtysh River and (b) Ulungur River