Citation: | LI Hai-tao, YANG Xin, LEI Hua-ji, YANG Yan, JIN Lan-lan, HU Sheng-hong. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160 |
Cadmium is a volatile element with chalcophile affinity. In the marine environment, Cd is a micronutrient element, while in the ecological environment and agricultural soil environment, Cd is a toxic element. Therefore, Cd isotopes have been used in marine science, earth science, environmental science, and agricultural scientific research, and show great application potential.
To summarize the high-precision analytical technology and applications of Cd isotopes in different research fields.
The recent research progress in digestion methods, separation and purification of Cd, and double-spikes calibration methods for organic matter-rich environmental samples, plant samples and biological samples were summarized.
For organic matter-rich samples including environmental, plant and biological samples, microwave digestion, high-pressure ashing and perchloric acid digestion can eliminate the influence of organic matter in Cd isotope analysis. Combined AG MP-1(M) resin with hydrochloric acid leaching system can effectively separate the matrix and interfering elements, which will not result in Cd isotope fractionation. The precision of Cd isotope with 111Cd-113Cd isotope double-spike correction was around 0.1εCd/amu. The application of Cd isotopes in marine science, geoscience, environmental science, and agricultural science were also summarized in this paper. Cadmium isotopes were used successfully for building marine biological geochemistry cycles, inversion of ancient marine environments and primary productivity change. In sulfide deposits, Cd isotopes were used to trace the evolution of ore fluids and the source of ore metals, and to discriminate different deposit types. In environmental systems, Cd isotopes were applied to distinguish Cd pollution sources, and to investigate Cd sources, migration, circulation and storage mechanisms in agricultural sciences.
The research of the high-precision Cd isotope analytical method and Cd isotope fractionation mechanism and model, will promote to establishment the tracer system of Cd isotope biogeochemistry fractionation and innovative development of non-traditional stable isotope geochemistry.
[1] | 唐波, 王景腾, 付勇. 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. Tang B, Wang J T, Fu Y. Magnesium isotope composition of different geological reservoirs and controlling factors of magnesium isotope fractionation in the formation of carbonate minerals[J]. Rock and Mineral Analysis, 2020, 39(2): 162-173. |
[2] | 王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. Wang Y, Zhu X Q. Fe isotope systematics and its implications in ore deposit geology[J]. Acta Petrologica Sinica, 2012, 28(11): 3638-3654. |
[3] | Wang D, Sun X, Zheng Y, et al. Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Constraints from Fe-Zn isotopes[J]. Ore Geology Reviews, 2017, 84: 347-363. doi: 10.1016/j.oregeorev.2016.12.030 |
[4] | Ding X, Ripley E M, Wang W, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261: 327-341. doi: 10.1016/j.gca.2019.07.015 |
[5] | 秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161. Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. |
[6] | Wu S, Zheng Y, Wang D, et al. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration[J]. Ore Geology Reviews, 2017, 90: 14-24. doi: 10.1016/j.oregeorev.2017.10.001 |
[7] | 张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355. Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. |
[8] | 何承真, 肖朝益, 温汉捷, 等. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报, 2016, 32(11): 3394-3406. He C Z, Xiao C Y, Wen H J, et al. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406. |
[9] | 王中伟, 袁玮, 陈玖斌. 锌稳定同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 84-93. Wang Z W, Yuan W, Chen J B. Zn stable isotope geochemistry: A review[J]. Earth Science Frontiers, 2015, 22(5): 84-93. |
[10] | 王悦, 朱祥坤. 锌同位素在矿床学中的应用: 认识与进展[J]. 矿床地质, 2010, 29(5): 843-852. Wang Y, Zhu X K. Application of Zn isotopes to study of mineral deposits: A review[J]. Mineral Deposits, 2010, 29(5): 843-852. |
[11] | 王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. |
[12] | Zhong Q H, Zhou Y C, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 1-9. |
[13] | 朱传威, 温汉捷, 张羽旭, 等. Cd稳定同位素测试技术进展及其应用[J]. 地学前缘, 2015, 22(5): 115-123. Zhu C W, Wen H J, Zhang Y X, et al. Analytical technique for cadmium stable isotopes and its applications[J]. Earth Science Frontiers, 2015, 22(5): 115-123. |
[14] | 刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmental tracing[J]. Earth and Environment, 2015, 43(6): 687-696. |
[15] | 魏荣菲, 郭庆军, 杨俊兴, 等. 镉同位素技术在环境科学研究中的应用进展[J]. 生态学杂志, 2014, 33(2): 525-536. Wei R F, Guo Q J, Yang J X, et al. Application and progress of Cd isotope technology in environmental science[J]. Chinese Journal of Ecology, 2014, 33(2): 525-536. |
[16] | Fouskas F, Ma L, Engle M A, et al. Cadmium isotope fractionation during coal combustion: Insights from two U. S. coal-fired power plants[J]. Applied Geochemistry, 2018, 96: 100-112. doi: 10.1016/j.apgeochem.2018.06.007 |
[17] | Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013 |
[18] | 魏荣菲. 植物镉同位素分析测试方法的优化及其分馏特征研究[D]. 北京: 中国科学院大学, 2015. Wei R F.Study on the method of Cd isotope analysis and the characteristics of Cd isotope fractionation in plants[D].Beijing: University of Chinese Academy of Sciences, 2015. |
[19] | Abouchami W, Galer S J G, de Baar H J W, et al. Bio-geochemical cycling of cadmium isotopes in the southern ocean along the Zero Meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022 |
[20] | Ripperger S, Rehkäemper M, Porcelli D, et al. Cadmium isotope fractionation in seawater-A signature of biological activity[J]. Earth and Planetary Science Letters, 2007, 261(3): 670-684. |
[21] | Wen H, Zhu C, Zhang Y, et al. Zn/Cd ratios and cad-mium isotope evidence for the classification of lead-zinc deposits[J]. Scientific Reports, 2016, 6(1): 25273. doi: 10.1038/srep25273 |
[22] | Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029 |
[23] | Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 243-253. doi: 10.1016/j.epsl.2011.10.004 |
[24] | Horner T J, Schönbächler M, Rehkämper M, et al. Ferro-manganese crusts as archives of deep water Cd isotope compositions[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4), doi:10.3390/geosciences10010036. |
[25] | Schmitt A D, Galer S J G, Abouchami W. Mass-depen-dent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 262-272. doi: 10.1016/j.epsl.2008.10.025 |
[26] | Tan D, Zhu J M, Wang X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020: 1-33. |
[27] | Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236 |
[28] | Wei R, Guo Q, Wen H, et al. Fractionation of stable cad-mium isotopes in the cadmium Tolerant Ricinus communis and hyperaccumulator Solanum nigrum[J]. Scientific Reports, 2016, 6(1): 24309. doi: 10.1038/srep24309 |
[29] | Li M L, Liu S A, Xue C J, et al. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18. doi: 10.1016/j.gca.2019.08.018 |
[30] | Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. The Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127 |
[31] | Barraza F, Moore R E T, Rehkäemper M, et al. Cadmium isotope fractionation in the soil-cacao systems of Ecuador a pilot field study[J]. The Royal Society of Chemistry, 2019, 9: 34011-34022. |
[32] | Moore R E T, Ullah I, de Oliveira V H, et al. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters[J]. Horticulture Research, 2020, 7(71): 1-11. |
[33] | Zhu C, Wen H, Zhang Y, et al. Cadmium isotope fractionation in the fule Mississippi Valley-type deposit, Southwest China[J]. Mineralium Deposita, 2016, 52(5): 675-686. |
[34] | Wang D, Zheng Y Y, Mathur R, et al. Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming system: A case study of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet[J]. Ore Geology Reviews, 2020, 119: 1-14. |
[35] | Xu C, Zhong H, Hu R Z, et al. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in southwest China: Implications of Pb-Zn-S-Cd isotopic compositions[J]. Mineralium Deposita, 2020, 55(3): 491-513. doi: 10.1007/s00126-019-00893-5 |
[36] | Zhang Y, Wen H, Zhu C, et al. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan Section, South China[J]. Chemical Geology, 2018, 481: 110-118. doi: 10.1016/j.chemgeo.2018.02.005 |
[37] | Sweere T C, Dickson A J, Jenkyns H C, et al. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during oceanic Anoxic Event 2(Late Cretaceous)[J]. Earth and Planetary Science Letters, 2020, 546: 1-11. |
[38] | Sweere T C, Dickson A J, Jenkyns H C, et al. Controls on the Cd-isotope composition of Upper Cretaceous (Cenomanian-Turonian) organic-rich mudrocks from South Texas (Eagle Ford Group)[J]. Geochemical at Cosmochimica Acta, 2020, 287: 251-262. doi: 10.1016/j.gca.2020.02.019 |
[39] | Pallavicini N, Engstrom E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G |
[40] | Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D |
[41] | Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2020, doi:10.1111/ggr.12357. |
[42] | Park J, Kim J, Lee K, et al. Comparison of acid extraction and total digestion methods for measuring Cd isotope Ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2020, 192, doi:10.1007/s10661-019-8017-8. |
[43] | Rosman K J R, de Laeter J R. The isotopic composition of cadmium in terrestrial minerals[J]. International Journal of Mass Spectrometry and Ion Physics, 1975, 16: 385-394. doi: 10.1016/0020-7381(75)85027-3 |
[44] | Wombacher F, Rehkämper M, Mezger K, et al. Stable iso-tope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2 |
[45] | Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x |
[46] | Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020 |
[47] | Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4 |
[48] | Zhang L, Li J, Xu Y G, et al. The influence of the double spike proportion effect on stable isotope (Zn, Mo, Cd, and Sn) measurements by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(4): 555-562. doi: 10.1039/C8JA00016F |
[49] | Ripperger S, Rehkämper M. Precise determination of cad-mium isotope fractionation in seawater by double spike MC-ICPMS[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005 |
[50] | Xue Z, Rehkämper M, Schoenbaechler M, et al. A new methodology for precise cadmium isotope analyses of seawater[J]. Analytical and Bioanalytical Chemistry, 2012, 402(2): 883-893. doi: 10.1007/s00216-011-5487-0 |
[51] | Martinkova E, Chrastný V, Francova M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039 |
[52] | Chrastný V, Čadková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002 |
[53] | Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335. |
[54] | Lacan F, Francois R, Ji Y, et al. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 2006, 70(20): 5104-5118. doi: 10.1016/j.gca.2006.07.036 |
[55] | Schmitt A D, Galer S J G, Abouchami W. High-pre-cision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1079-1088. doi: 10.1039/b821576f |
[56] | Shiel A E, Barling J, Orians K J, et al. Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios[J]. Analytica Chimica Acta, 2009, 633(1): 29-37. doi: 10.1016/j.aca.2008.11.026 |
[57] | Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025 |
[58] | Xie R C, Rehkämper M, Grasse P, et al. Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific[J]. Earth and Planetary Science Letters, 2019, 512: 134-146. doi: 10.1016/j.epsl.2019.02.001 |
[59] | Sieber M, Conway T M, de Souza G F, et al. High-resolution Cd isotope systematics in multiple zones of the southern ocean from the Antarctic circumnavigation expedition[J]. Earth and Planetary Science Letters, 2019, 527, doi:10.1016/j.epsl.2019.115799. |
[60] | Janssen D J, Abouchami W, Galer S J G, et al. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific[J]. Earth and Planetary Science Letters, 2017, 472: 241-252. doi: 10.1016/j.epsl.2017.04.048 |
[61] | Yang S C, Lee D C, Ho T Y, et al. The isotopic composition of dissolved cadmium in the water column of the West Philippine Sea[J]. Frontiers in Marine Science, 2014, 1(61), doi:10.3389/fmars.2014.00061. |
[62] | Yang S C, Zhang J, Sohrin Y, et al. Cadmium cycling in the water column of the Kuroshio-Oyashio Extension Region: Insights from dissolved and particulate isotopic composition[J]. Geochimica et Cosmochimica Acta, 2018, 233: 66-80. doi: 10.1016/j.gca.2018.05.001 |
[63] | Xie R C, Galer S J G, Abouchami W, et al. Non-rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters, 2017, 471: 94-103. doi: 10.1016/j.epsl.2017.04.024 |
[64] | Lambelet M, Rehkämper M, de Flierdt T V, et al. Iso-topic analysis of Cd in the mixing zone of Siberian rivers with the arctic ocean-new constraints on marine Cd cycling and the isotope composition of riverine Cd[J]. Earth and Planetary Science Letters, 2013, 361: 64-73. doi: 10.1016/j.epsl.2012.11.034 |
[65] | Bridgestock L, Rehkämper M, van de Flierdt T, et al. The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean[J]. Geophysical Research Letters, 2017, 44(6): 2932-2940. doi: 10.1002/2017GL072748 |
[66] | Yang S C, Lee D C, Ho T Y. The isotopic composition of cadmium in the water column of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2012, 98: 66-77. doi: 10.1016/j.gca.2012.09.022 |
[67] | Janssen D J, Conway T M, John S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6888-6893. doi: 10.1073/pnas.1402388111 |
[68] | Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039 |
[69] | Janssen D J, Abouchami W, Galer S J G, et al. Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink[J]. Earth and Planetary Science Letters, 2019, 515: 67-78. doi: 10.1016/j.epsl.2019.03.006 |
[70] | George E, Stirling C H, Gault-Ringold M, et al. Determi-nation of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2019, 514: 84-95. doi: 10.1016/j.epsl.2019.02.031 |
[71] | John S G, Kunzmann M, Townsend E J, et al. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 466: 202-208. doi: 10.1016/j.palaeo.2016.11.003 |
[72] | Hohl S V, Galer S J G, Gamper A, et al. Cadmium isotope variations in Neoproterozoic carbonates-A tracer of biologic production?[J]. Geochemical Perspectives Letters, 2017, 3: 32-44. |
[73] | Viehmann S, Hohl S V, Kraemer D, et al. Metal cycling in Mesoproterozoic microbial habitats: Insights from trace elements and stable Cd isotopes in stromatolites[J]. Gondwana Research, 2019, 67: 101-114. doi: 10.1016/j.gr.2018.10.014 |
[74] | Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the Basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (Bio)geochemical metal cycling in cryogenian seawater[J]. Geoscience, 2020, doi:10.3390/geosciences 10010036. |
[75] | Dickson A J, Idiz E, Porcelli D, et al. The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks[J]. Geochimica et Cosmochimica Acta, 2020, 287: 205-220. doi: 10.1016/j.gca.2019.11.001 |
[76] | Georgiev S V, Horner T J, Stein H J, et al. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event[J]. Earth and Planetary Science Letters, 2015, 410: 84-96. doi: 10.1016/j.epsl.2014.11.010 |
[77] | Hohl S V, Jiang S Y, Wei H Z, et al. Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution[J]. Geochimica et Cosmochimica Acta, 2019, 263: 195-214. doi: 10.1016/j.gca.2019.07.036 |
[78] | 王伟中, 张朝晖, 温汉捷, 等. 镉同位素在古环境重建中的应用: 以晚泥盆世弗拉期-法门期生物灭绝事件为例[J]. 矿物岩石地球化学通报, 2020, 39(1): 80-88. Wang W Z, Zhang C H, Wen H J, et al. The application of Cd isotopes in the paleo-environment reconstruction: A case study of the Frasnian-Famennian mass extinction event in the Late Devonian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 80-88. |
[79] | Zhu C, Wen H, Zhang Y, et al. Cadmium and sulfur iso-topic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China[J]. Ore Geology Reviews, 2016, 76: 152-162. doi: 10.1016/j.oregeorev.2016.01.010 |
[80] | Deng L, Bi C J, Jia J P, et al. Effects of heating activities in winter on characteristics of PM2.5-bound Pb, Cd and lead isotopes in cities of China[J]. Journal of Cleaner Production, 2020, 265: 1-10. |
[81] | Yang W J, Ding K B, Zhang P, et al. Cadmium stable iso-tope variation in a mountain area impacted by acid mine drainage[J]. The Science of the Total Environment, 2019, 646: 696-703. doi: 10.1016/j.scitotenv.2018.07.210 |
[82] | Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060 |
[83] | Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science and Technology, 2017, 51(13): 7369-7377. doi: 10.1021/acs.est.7b00858 |
[84] | Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science and Technology, 2018, 52(4): 1919-1928. doi: 10.1021/acs.est.7b05439 |
[85] | Wiggenhauser M B, Moritz I M, Müller M, et al. Cad-mium isotope fractionation in soil-wheat systems[J]. Environmental Science and Technology, 2016, 50(17): 1-32. |
(a) The volume of applied literature published annually on Cd isotopes; (b) The volume of literature published annually on Cd isotopes in research areas