Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 3
Article Contents

ZHANG Jia, LIU Han-bin, LI Jun-jie, JIN Gui-shan, HAN Juan, ZHANG Jian-feng, SHI Xiao. Determination of Experimental Parameters during Measurement of 40Ar Content in K-Ar Dilution Method[J]. Rock and Mineral Analysis, 2021, 40(3): 451-459. doi: 10.15898/j.cnki.11-2131/td.202012040158
Citation: ZHANG Jia, LIU Han-bin, LI Jun-jie, JIN Gui-shan, HAN Juan, ZHANG Jian-feng, SHI Xiao. Determination of Experimental Parameters during Measurement of 40Ar Content in K-Ar Dilution Method[J]. Rock and Mineral Analysis, 2021, 40(3): 451-459. doi: 10.15898/j.cnki.11-2131/td.202012040158

Determination of Experimental Parameters during Measurement of 40Ar Content in K-Ar Dilution Method

  • BACKGROUND

    The measurement of 40Ar content in K-Ar dilution method includes sample melting and releasing gas, gas purification and enrichment, mass spectrometry measurement. With the application of a newly designed double vacuum furnace and gas purification system, the experiment process gradually changes from manual operation to automatic program control, but the parameters are unclear.

    OBJECTIVES

    To determine the parameters by conditional experiments and establish a complete measurement method of 40Ar content in K-Ar dilution method.

    METHODS

    Parameters were determined by releasing and absorbing an air standard in activated carbon cold finger with different times, melting different types of samples with different temperatures of the double vacuum furnace. The method reliability was verified by K-Ar dating for SK01 sanidine standard.

    RESULTS

    The optimal heating release time for activated carbon cold finger was 500s, and the adsorption time was 200s. Using these conditions, the gas produced by the melting in the furnace can be completely transferred and released to avoid isotope fractionation. The corresponding melting temperature was used for different types of samples to ensure that the samples were completely melted and outgassed, the melting temperature of the furnace for clay minerals, biotite, and muscovite should be set to 1400℃, and 1500℃ for amphibole, 1550℃ for basic rock, and 1600℃for potassium feldspar. The K-Ar dating of 10 sets of SK01 sanidine standards showed that the results were consistent with 40Ar-39Ar dating ages.

    CONCLUSIONS

    The obtained condition parameters meet the accurate measurement of 40Ar content using the K-Ar dilution method.

  • 加载中
  • [1] 刘建强, 陈立辉, 钟源, 等. 小兴安岭逊克地区小兴安岭逊克地区第四纪高镁安山岩的岩石学、K-Ar年代学及火山地质特征[J]. 岩石学报, 2017, 33(1): 31-40.

    Google Scholar

    Liu J Q, Chen L H, Zhong Y, et al. Petrological, K-Ar chronological and volcanic geological characteristics of Quaternary Xunke high-Mg# andesites from the Lesser Khingan Range[J]. Acta Petrologica Sinica, 2017, 33(1): 31-40.

    Google Scholar

    [2] 向安平, 佘宏全, 陈毓川, 等. 内蒙古红花尔基钨钼矿云英岩化白云母Ar-Ar定年及其地质意义[J]. 岩矿测试, 2016, 35(1): 108-116.

    Google Scholar

    Xiang A P, She H Q, Chen Y C, et al. Ar-Ar age of muscovite from the greisenization alteration zones of the Honghuaerji tungsten polymetallic deposit, Inner Mongolia, and its geological significance[J]. Rock and Mineral Analysis, 2016, 35(1): 108-116.

    Google Scholar

    [3] Bui H B, Ngo X T, Yungoo S, et al. K-Ar dating of fault gouges from the Red River fault zone of Vietnam[J]. Acta Geologica Sinica (English Edition), 2016, 90(5): 1653-1663. doi: 10.1111/1755-6724.12808

    CrossRef Google Scholar

    [4] 毕丽莎, 梁晓, 王根厚, 等. 滇西澜沧江构造带中-南段澜沧群变质变形期次及Ar-Ar年代学约束[J]. 地球科学, 2018, 43(9): 3252-3266.

    Google Scholar

    Bi L S, Liang X, Wang G H, et al. Metamorphism-deformation phases and Ar-Ar chronological constraints of the Lancang group in the middle and southern sections of the Lancangjiang tectonic belt, western Yunnan[J]. Earth Science, 2018, 43(9): 3252-3266.

    Google Scholar

    [5] 张斌, 陈文, 孙敬博, 等. 南天山欧西达坂岩体热演化历史与隆升过程分析——来自Ar-Ar和(U-Th)/He热年代学的证据[J]. 中国科学: 地球科学, 2016, 46(3): 392-405.

    Google Scholar

    Zhang B, Chen W, Sun J B, et al. The thermal history and uplift process of the Ouxidaban pluton in the South Tianshan Orogen: Evidence from Ar-Ar and (U-Th)/He[J]. Science China: Earth Sciences, 2016, 59(3): 349-361.

    Google Scholar

    [6] Paul R R, Carl C S, Alan L D, et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating[J]. Chemical Geology, 1998, 145: 117-152. doi: 10.1016/S0009-2541(97)00159-9

    CrossRef Google Scholar

    [7] Terry L S, Ian M. Characterization and calibration of 40Ar/39Ar dating standards[J]. Chemical Geology, 2003, 198: 189-211. doi: 10.1016/S0009-2541(03)00005-6

    CrossRef Google Scholar

    [8] 桑海清, 王非, 贺怀宇, 等. K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制[J]. 岩石学报, 2006, 22(12): 3059-3078.

    Google Scholar

    Sang H Q, Wang F, He H Y et al. Intercalibration of ZBH-25 biotite reference material unitized for K-Ar and 40Ar-39Ar age determination[J]. Acta Petrologica Sinica, 2006, 22(12): 3059-3078.

    Google Scholar

    [9] 张有瑜, 刘可禹, 罗修泉. 自生伊利石年代学研究——理论、方法与实践[M]. 北京: 科学出版社, 2016: 82-102.

    Google Scholar

    Zhang Y Y, Liu K Y, Luo X Q. Geochronology of authigenic illite: Principle, methods and application[M]. Beijing: Science Press, 2016: 82-102.

    Google Scholar

    [10] Norbert C, Horst Z, Nicole L, et al. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences[J]. Earth-Science Reviews, 2012, 115: 76-96.

    Google Scholar

    [11] Foland K A, Hubacher F A, Arehart G B. 40Ar/39Ar dating of very fine-grained samples an encapsulated-vial procedure to overcome the problem of 39Ar recoil loss[J]. Chemical Geology, 1992, 102(1-4): 269-276. doi: 10.1016/0009-2541(92)90161-W

    CrossRef Google Scholar

    [12] McDougall I, Harrison T M. Geochronology and thermo-chronology by the 40Ar/39Ar method (second edition)[M]. New York: Oxford University Press, 1999: 269.

    Google Scholar

    [13] Wang F, Shi W B, Guillou H, et al. A new approach of unspiked K-Ar dating using laser fusion on microsamples[J]. Acta Geologica Sinica (English Edition), 2019, 93(2): 416.

    Google Scholar

    [14] Peter W R, Richard W C, Paul R R, et al. Geochronology and thermochronology[M]. New Jersey: John Wiley & Sons, 2018: 233-234.

    Google Scholar

    [15] 张万峰, 邱华宁, 郑德文, 等. 40Ar/39Ar定年自动去气系统的研制及其性能[J]. 地球化学, 2020, 49(5): 509-515.

    Google Scholar

    Zhang W F, Qiu H N, Zhen D W, et al. An automatic degassing system for 40Ar/39Ar dating[J]. Geochimica, 2020, 49(5): 509-515.

    Google Scholar

    [16] 邱华宁, 白秀娟, 刘文贵, 等. 自动化40Ar/39Ar定年设备研制[J]. 地球化学, 2015, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007

    CrossRef Google Scholar

    Qiu H N, Bai X J, Liu W G, et al. Automatic 40Ar/39Ar dating technique using multicollector ArgusⅥ MS with home-made apparatus[J]. Geochimica, 2015, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007

    CrossRef Google Scholar

    [17] 李军杰, 刘汉彬, 张佳, 等. 应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成[J]. 岩矿测试, 2016, 35(3): 229-235.

    Google Scholar

    Li J J, Liu H B, Zhang J, et al. The accurate measurement of argon isotopes composition in air by Argus multi-collector noble gas mass spectrometer[J]. Rock and Mineral Analysis, 2016, 35(3): 229-235.

    Google Scholar

    [18] Kim J, Jeon S. 40Ar/39Ar age determination using ArgusⅥ multi-collector noble gas mass spectrometer: Performance and its application to geosciences[J]. Journal of Analytical Science and Technology, 2015, 6(1): 4. doi: 10.1186/s40543-015-0049-2

    CrossRef Google Scholar

    [19] Jicha B D, Singerb S, Sobol P. Re-evaluation of the ages of 40Ar/39Ar sandine standards and supereruptions in the western U.S. Using a Noblesse multi-collector mass spectrometer[J]. Chemical Geology, 2016, 431: 54-66. doi: 10.1016/j.chemgeo.2016.03.024

    CrossRef Google Scholar

    [20] Harrison T M, Celerier J, Aikman A B, et al. Diffusion of 40Ar in muscovite[J]. Geochimica et Cosmochimica Acta, 2009, 73: 1039-1051. doi: 10.1016/j.gca.2008.09.038

    CrossRef Google Scholar

    [21] 邱华宁, 彭良. 40Ar-39Ar年代学与流体包裹体定年[M]. 合肥: 中国科学技术大学出版社, 1997: 206-218.

    Google Scholar

    Qiu H N, Peng L. 40Ar-39Ar geochronology and fluid inclusion dating[M]. Hefei: China University of Science and Technology Press, 1997: 206-218.

    Google Scholar

    [22] Sanderman H, Dickson W L. An ordovician, 40Ar/39Ar step-heating age for fabric age for fabric-forming hornblende in amphibolite, the Great Bend Complex, Central Newfoundland (NTS 2D/5)[J]. Geological Survey Report, 2019, 19(1): 85-96.

    Google Scholar

    [23] 张佳, 刘汉彬, 李军杰, 等. 石英样品Ar-Ar定年测试过程中的相关问题及解决办法[J]. 铀矿地质, 2018, 34(3): 159-165. doi: 10.3969/j.issn.1000-0658.2018.03.005

    CrossRef Google Scholar

    Zhang J, Liu H B, Li J J, et al. Some problem and its solution in Ar-Ar dating measurement for quartz sample[J]. Uranium Geology, 2018, 34(3): 159-165. doi: 10.3969/j.issn.1000-0658.2018.03.005

    CrossRef Google Scholar

    [24] 李军杰. 自生伊利石中40K-40Ar和40Ar-39Ar定年方法的建立及其在苏里格气田成藏期的应用[D]. 北京: 中国科学院大学, 2017: 36-39.

    Google Scholar

    Li J J. The establishment of 40K-40Ar and 40Ar-39Ar dating method of authigenic illite and the application in the determination of the pool-forming periods of sulige gas field[D]. Beijing: Beijing University of Chinese Academy of Sciences, 2017: 36-39.

    Google Scholar

    [25] 刘汉彬, 李军杰, 张佳, 等. ArgusⅥ多接收稀有气体质谱仪在40Ar/39Ar高精度定年中的应用[J]. 质谱学报, 2018, 39(4): 407-415.

    Google Scholar

    Liu H B, Li J J, Zhang J, et al. Application of ArgusⅥ multi-collector rare gas mass spectrometer in high-precision 40Ar/39Ar dating[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(4): 407-415.

    Google Scholar

    [26] Dempsey E L. Improvements in noble gas separation methodology: A nude cryogenic trap[J]. Geochemistry, Geophysics, Geosystems, 2001, 2.

    Google Scholar

    [27] 邱华宁. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例[J]. 地球化学, 2006, 35(2): 133-140.

    Google Scholar

    Qiu H N. Construction and development of new Ar-Ar laboratories in China: Insight from GV-5400 Ar-Ar laboratory in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences[J]. Geochimica, 2006, 35(2): 133-140.

    Google Scholar

    [28] 刘羽, 牛俐珺, 李永国, 等. 不同工况下活性炭吸附性惰性气体性能的初步研究[J]. 辐射防护, 2017, 37(4): 298-302.

    Google Scholar

    Liu Y, Niu L J, Li Y G, et al. Study on adsorption performance of activated carbon for radioactive inert gases under different operating conditions[J]. Radiation Protection, 2017, 37(4): 298-302.

    Google Scholar

    [29] 冯旭, 肖德涛, 丘厚康, 等. 活性炭高压吸附氡气技术研究[J]. 原子能科学技术, 2016, 50(4): 763-768.

    Google Scholar

    Feng X, Xiao D T, Qiu H K, et al. Research on high pressure adsorption of radon on active carbon[J]. Atomic Energy Science and Technology, 2016, 50(4): 763-768.

    Google Scholar

    [30] 高晶晶, 刘玉琳. 钾长石K-Ar定年若干问题的讨论[J]. 高校地质学报, 2006, 12(3): 375-377. doi: 10.3969/j.issn.1006-7493.2006.03.009

    CrossRef Google Scholar

    Gao J J, Liu Y L. Discussion on K-Ar dating of K-feldspar[J]. Geological Journal of China Universities, 2006, 12(3): 375-377. doi: 10.3969/j.issn.1006-7493.2006.03.009

    CrossRef Google Scholar

    [31] 李洁, 陈文, 刘新宇, 等. 新生代透长石SK01作为39Ar-40Ar法定年标准物质的均匀性检验[J]. 岩矿测试, 2013, 32(2): 213-220. doi: 10.3969/j.issn.0254-5357.2013.02.005

    CrossRef Google Scholar

    Li J, Chen W, Liu X Y, et al. Homogeneity test of Cenozoic sanidine SK01 as a national standard reference material for 39Ar-40Ar dating[J]. Rock and Mineral Analysis, 2013, 32(2): 213-220. doi: 10.3969/j.issn.0254-5357.2013.02.005

    CrossRef Google Scholar

    [32] 李洁. 新生代39Ar-40Ar年龄标准物质透长石SK01的研制[D]. 北京: 中国地质大学(北京), 2013: 23-59.

    Google Scholar

    Li J. Research & development of Cenozoic sanidine SK01 as a national standard reference material for 39Ar-40Ar dating[D]. Beijing: China University of Geosciences (Beijing), 2013: 23-59.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(1828) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint