Citation: | XIE Hai-yun, LIU Yan-hao, JI Cui-cui, JIN Yan-ling, ZHANG Pei, TIAN Xiao-song, LIU Rong-xin. Mineralogical Analysis of Copper-Lead-Zinc Mixed Concentrate and Study on Separation Efficiency[J]. Rock and Mineral Analysis, 2021, 40(4): 542-549. doi: 10.15898/j.cnki.11-2131/td.202011220152 |
There are large amounts of copper-lead-zinc polymetallic sulfide ore resources in Yunnan Province, China, but the efficient separation of these resources remains a major problem.
To improve the separation efficiency of valuable minerals in mixed concentrates.
In this study, the major elemental content, phase composition, mineral composition, particle size characteristics, and monomer liberation degree of a mixed concentrate were analyzed using a variety of modern detection methods such as chemical analysis, X-ray diffraction, and mineral liberation analysis (MLA).
The results showed that the mixed concentrate had fine particles, and some minerals occurred as intergrowths or inclusions. The monomer liberation degree of the target minerals chalcopyrite, galena, and sphalerite was medium to low, ranging from 69.28% to 70.56%. It was preliminarily predicted that the theoretical separation efficiencies of copper, lead, and zinc in the mixed concentrate were 71.63%, 62.97% and 72.72%, respectively.
Improving the grinding fineness of mixed concentrates to promote the full liberation of metal minerals is a key way to improve the separation efficiency of copper, lead, and zinc minerals.
[1] | 熊丽青. 试分析地质工作中的地质实验测试技术[J]. 世界有色金属, 2020(14): 216-217. doi: 10.3969/j.issn.1002-5065.2020.14.099 Xiong L Q. Testing technology of geological experiment in geological analysis[J]. World Nonferrous Metals, 2020(14): 216-217. doi: 10.3969/j.issn.1002-5065.2020.14.099 |
[2] | 温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021(2): 12-23. doi: 10.3969/j.issn.1671-9492.2021.02.003 Wen L G, Jia M M, Wang Q, et al. New automatic mineralogy technology based on scanning electron microscope-BPMA and its application prospect[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 12-23. doi: 10.3969/j.issn.1671-9492.2021.02.003 |
[3] | 张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61-73. Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology in mineral identification and occurrence state study of sandstone type uranium deposits in Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61-73. |
[4] | 曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征[J]. 岩矿测试, 2019, 38(2): 160-168. Zeng G S, Ou L M. Mineralogical characteristics of mineral processing technology of Peruvian copper sulfur ore by X-ray diffraction and scanning electron microscopy[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168. |
[5] | Dieye M, Lichtervelde M V, Ndiaye A A, et al. Mine-ralogical characterization of heavy mineral concentrates from Senegalese great cost by using QEMSCAN and SEM[J]. International Journal of Geosciences, 2020, 11(12): 800-817. doi: 10.4236/ijg.2020.1112041 |
[6] | Little L, Becker M, Wiese J, et al. Auto-SEM particle shape characterisation: Investigating fine grinding of UG2 ore[J]. Minerals Engineering, 2015, 82: 92-100. doi: 10.1016/j.mineng.2015.03.021 |
[7] | 高倩倩, 刘杨, 杨艳芳, 等. MLA与偏光显微镜在工艺矿物学研究中的应用对比[J]. 矿业工程, 2018(4): 39-40. Gao Q Q, Liu Y, Yang Y F, et al. Application comparison of MLA and polarizing microscope in process mineralogy research[J]. Mining Engineering, 2018(4): 39-40. |
[8] | 陈江安, 邱廷省, 余文. MLA自动检测技术在直接还原铁工艺矿物学研究中的应用[J]. 矿产综合利用, 2018(1): 86-91. doi: 10.3969/j.issn.1000-6532.2018.01.019 Chen J A, Qiu T S, Yu W. Application of MLA automatic detection technology in direct reduction iron process mineralogy research[J]. Mineral Comprehensive Utilization, 2018(1): 86-91. doi: 10.3969/j.issn.1000-6532.2018.01.019 |
[9] | 白旭, 林伊琳, 文书明, 等. 非洲赞比亚难选混合铜矿工艺矿物学研究[J]. 有色金属(选矿部分), 2021(3): 15-20. doi: 10.3969/j.issn.1671-9492.2021.03.003 Bai X, Lin Y L, Wen S M, et al. Study on process mineralogy of refractory mixed copper ore in Zambia, Africa[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 15-20. doi: 10.3969/j.issn.1671-9492.2021.03.003 |
[10] | 胡海祥, 李广. MLA在广东斑岩型锡石矿嵌布特征及赋存状态研究中的应用[J]. 过程工程学报, 2019, 19(5): 1006-1013. Hu H X, Li G. The application of MLA in the study of dissemination characteristics and occurrence of porphyry cassiterite deposits in Guangdong[J]. Acta Process Engineering, 2019, 19(5): 1006-1013. |
[11] | Daley T, Opuni K B, Raj E, et al. Monitoring the process of formation of ZnO from ZnO using combined XRD/XAS technique[J]. Journal of Physics: Condensed Matter, 2021, 33(26): 264002. doi: 10.1088/1361-648X/abfb91 |
[12] | Isabel B. Monte Carlo simulations of electron-sample interactions at phase boundaries and implications for automated mineralogy[J]. Minerals Engineering, 2020, 155: 106451. doi: 10.1016/j.mineng.2020.106451 |
[13] | 鱼博, 王宇斌, 王妍, 等. 某铜铅锌多金属硫化矿工艺矿物学研究[J]. 中国钼业, 2021, 45(1): 34-38. Yu B, Wang Y B, Wang Y, et al. Process mineralogy of a copper lead zinc polymetallic sulfide ore[J]. China Molybdenum Industry, 2021, 45(1): 34-38. |
[14] | 何丽, 范超, 田颖, 等. X射线粉晶衍射法结合运用于岩矿鉴定的薄弱部分——隐晶质岩石[J]. 中国锰业, 2017, 35(6): 132-135. He L, Fan C, Tian Y, et al. The weak part of X-ray powder diffraction in rock and mineral identification: Cryptocrystalline rocks[J]. China's Manganese Industry, 2017, 35(6): 132-135. |
[15] | 杜丽娟. 滇西北羊拉铜矿床热液体系演化与成矿机制研究[D]. 北京: 中国科学院大学, 2017. Du L J. Hydrothermal system evolution and metallogenic mechanism of Yangla copper deposit in Northwest Yunnan[D]. Beijing: University of Chinese Academy of Sciences, 2017. |
[16] | 刘榕鑫, 朱坤, 谢海云, 等. 云南斑岩型多金属金矿的嵌布特征及赋存状态研究[J]. 岩矿测试, 2018, 37(4): 404-410. Liu R X, Zhu K, Xie H Y, et al. Study on the distribution characteristics and occurrence state of porphyry polymetallic gold deposits in Yunnan Province[J]. Rock and Mineral Analysis, 2018, 37(4): 404-410. |
[17] | 孙晓华, 付强, 应永朋, 等. 青海某低品位铜铅锌银多金属矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020(5): 5-10. doi: 10.3969/j.issn.1671-9492.2020.05.002 Sun X H, Fu Q, Ying Y P, et al. Process mineralogy of a low grade Cu Pb Zn Ag polymetallic ore in Qinghai[J]. Nonferrous Metals (Mineral Processing Section), 2020(5): 5-10. doi: 10.3969/j.issn.1671-9492.2020.05.002 |
[18] | 刘守信, 师伟红. 新疆某低品位铜铅锌多金属硫化矿浮选分离试验研究[J]. 有色金属(选矿部分), 2021(2): 93-97. doi: 10.3969/j.issn.1671-9492.2021.02.015 Liu S X, Shi W H. Experimental study on flotation separation of a low grade copper-lead-zinc polymetallic sulfide ore in Xinjiang[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 93-97. doi: 10.3969/j.issn.1671-9492.2021.02.015 |
[19] | 肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020, 18(1): 65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014 Xiao W, Tian X S. Study on flotation separation of Diqing copper lead zinc sulfide ore in Yunnan[J]. Mineral Comprehensive Utilization, 2020, 18(1): 65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014 |
[20] | 吴继宗, 谢海云, 田小松, 等. 高硫铜锌矿的全混浮-再磨脱硫及铜锌分离[J]. 有色金属工程, 2019, 9(7): 65-71. doi: 10.3969/j.issn.2095-1744.2019.07.011 Wu J Z, Xie H Y, Tian X S, et al. Desulfurization and separation of copper and zinc from high sulfur copper zinc ores by total flotation regrinding[J]. Nonferrous Metals Engineering, 2019, 9(7): 65-71. doi: 10.3969/j.issn.2095-1744.2019.07.011 |
[21] | 曾令明, 欧乐明. 某硫化锌矿浮选新工艺及工艺矿物学特性分析[J]. 中国有色金属学报, 2018, 28(9): 1867-1875. Zeng L M, Ou L M. Analysis of new flotation process and process mineralogical characteristics of a zinc sulfide ore[J]. Acta Nonferrous Metals of China, 2018, 28(9): 1867-1875. |
[22] | Pszonka J, Schulz B, Sala D. Application of mineral liber-ation analysis (MLA) for investigations of grain size distribution in submarine density flow deposits[J]. Marine and Petroleum Geology, 2021, 129: 105109. doi: 10.1016/j.marpetgeo.2021.105109 |
[23] | Huimin W U, Junping W, Shuang Z. Application of MLA system in analysis of non-metallic inclusions of stainless steel[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2020, 56(7): 18-21. |
[24] | Al-Khirbash S A. Mineralogical characterization of low-grade nickel laterites from the North Oman Mountains: Using mineral liberation analyses-scanning electron microscopy-based automated quantitative mineralogy[J]. Ore Geology Reviews, 120: 1034229. |
[25] | 荆晓雷, 郑桂兵, 任爱军, 等. 低品位铜铅锌铁复杂多金属资源清洁高效综合利用技术研究与应用[J]. 世界有色金属, 2018(10): 126-128. Jing X L, Zheng G B, Ren A J, et al. Research and application of clean and efficient comprehensive utilization technology of low grade copper, lead, zinc and iron complex polymetallic resources[J]. World Nonferrous Metals, 2018(10): 126-128. |
[26] | 吴中贤, 陶东平. 云南某胶磷矿AMICS工艺矿物学研究及其难选机理探讨[J]. 工程科学学报, 2021, 43(4): 503-511. Wu Z X, Tao D P. Research on AMICS process mineralogy of a collophanite in Yunnan and discussion on its refractory mechanism[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511. |
[27] | Mafra C, Bouzahzah H, Stamenov L, et al. Insights on the effect of pyrite liberation degree upon the acid mine drainage potential of sulfide flotation tailings[J]. Applied Geochemistry, 2020, 123(2): 104774. |
[28] | Xie H Y, Liu Y H, Rao B, et al. Selective passivation behavior of galena surface by sulfuric acid and a novel dlotation separation method for copper-lead sulfide ore without collector and inhibitor[J]. Separation and Purification Technology, 2021, 267: 118621. doi: 10.1016/j.seppur.2021.118621 |
[29] | Kursunoglu S, Top S, Kaya M. Recovery of zinc and lead from Yahyali non-sulphide flotation tailing by sequential acidic and sodium hydroxide leaching in the presence of potassium sodium tartrate[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3367-3378. doi: 10.1016/S1003-6326(20)65468-1 |
[30] | Xie H Y, Sun S, Wu J Z, et al. A case study of enhanced sulfidization flotation of lead oxide ore: Influence of depressants[J]. Minerals, 2020, 10(2): 95. |
X-ray diffraction analysis diagram of mixed concentrates
Polarizing microscope analysis of mixed concentrate (160 times magnification)
Polarizing microscope analysis of mixed concentrate (400 times magnification)