Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 3
Article Contents

ZHAO Jiang-hua, WANG Peng, LI Wei-liang, LI Zhong-yu. Determination of the Petroleum Substances in Samples of Reclaimed Land by Fluorescence Spectrophotometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150
Citation: ZHAO Jiang-hua, WANG Peng, LI Wei-liang, LI Zhong-yu. Determination of the Petroleum Substances in Samples of Reclaimed Land by Fluorescence Spectrophotometry with Accelerated Solvent Extraction[J]. Rock and Mineral Analysis, 2021, 40(3): 375-383. doi: 10.15898/j.cnki.11-2131/td.202011200150

Determination of the Petroleum Substances in Samples of Reclaimed Land by Fluorescence Spectrophotometry with Accelerated Solvent Extraction

More Information
  • BACKGROUND

    As an important index of land environmental quality, the content of petroleum substances determines the use of the land. It also reflects the effect of reclamation and treatment of polluted land to a large extent. The determination methods of petroleum substances in soil samples include gas chromatography, infrared spectrometry, and ultraviolet method. The gas chromatography mainly analyzes saturated alkanes in the samples. The infrared spectrometry identifies the petroleum substances in the samples by measuring the characteristic absorption values under different wave numbers. However, tetrachloroethene used as the solvent is harmful to the environment. Moreover, the pretreatment efficiency is low and the detection limit is high.

    OBJECTIVES

    To develop a method with high pre-treatment efficiency, low detection limit and good reproducibility.

    METHODS

    Petroleum substances in the reclaimed land samples have low content, most of the components are difficult to volatilize, the structure is complex, and the matrix interference is large. Using n-hexane as the solvent and accelerated solvent extraction (ASE) as the pretreatment method, the petroleum substances in the samples were determined by fluorescence photometer.

    RESULTS

    Using the petroleum standard material for marine environmental monitoring as the calibration material to prepare a working curve, the linear correlation coefficient was 0.9997, the detection limit was 0.40mg/kg, precision was 1.10% to 8.76% and the recovery was 89.0% to 95.7%. The results of actual samples were consistent with those of the currently valid infrared spectrophotometry method HJ 1051-2019, and the measurement results of high-content samples were higher than those of the infrared method.

    CONCLUSIONS

    The pretreatment method ASE has high automation and high extraction efficiency. It can be used to increase the precision by 11.5%-67.3%. For samples with a relatively complex structure of petroleum components and that are difficult to extract, the detection limit of this method is lower than that of the infrared method (4mg/kg).

  • 加载中
  • [1] Bratberg M, Olsvik P A, Edvardsen R B, et al. Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua)[J]. Chemosphere, 2013, 90(7): 2157-2171. doi: 10.1016/j.chemosphere.2012.11.026

    CrossRef Google Scholar

    [2] Polmear R, Stark J S, Roberts D, et al. The effects of oil pollution on Antarctic benthic diatom communities over 5 years[J]. Marine Pollution Bulletin, 2015, 90(1-2): 33-40. doi: 10.1016/j.marpolbul.2014.11.035

    CrossRef Google Scholar

    [3] 王高. 石油类污染物的特性及环境危害[J]. 中国化工贸易, 2016, 8(3): 265-266. doi: 10.3969/j.issn.1674-5167.2016.03.251

    CrossRef Google Scholar

    Wang G. Characteristics and environmental hazards of petroleum pollutants[J]. China Chemical Trade, 2016, 8(3): 265-266. doi: 10.3969/j.issn.1674-5167.2016.03.251

    CrossRef Google Scholar

    [4] Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2020, 386, 21663: 1-10.

    Google Scholar

    [5] Mu G, Fan L Y, Zhou Y, et al. Personal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and lung function alteration: Results of a panel study in China[J]. Science of the Total Environment, 2019, 684: 458-465. doi: 10.1016/j.scitotenv.2019.05.328

    CrossRef Google Scholar

    [6] Wang L, Li C M, Jiao B N, et al. Halogenated and parent polcyclic aromatic hydrocarbons in vegetables: Levels dietary intakes, and health risk assessments[J]. Science of the Total Environment, 2018, 616-617: 288-295. doi: 10.1016/j.scitotenv.2017.10.336

    CrossRef Google Scholar

    [7] Cakmak S, Hebbern C, Cakmak J D, et al. The influence of polycyclic aromatic hydrocarbons on lung function in a representative sample of the Canadian population[J]. Environmental Pollution, 2017, 228: 1-7. doi: 10.1016/j.envpol.2017.05.013

    CrossRef Google Scholar

    [8] 李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586.

    Google Scholar

    Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586.

    Google Scholar

    [9] 刘丹青. 我国污染场地土壤石油烃环境质量标准体系的现状与趋势[J]. 中国环境监测, 2020, 36(1): 138-146.

    Google Scholar

    Liu D Q. Current situation and trend of petroleum hydrocarbon related standard system in contaminated site soils of China[J]. Environmental Monitoring in China, 2020, 36(1): 138-146.

    Google Scholar

    [10] 薛广海, 李强, 刘庆, 等. 当前国内外含油污泥处理标准及石油烃检测方法的深度剖析和对比[J]. 石油化工应用, 2019, 38(1): 1-6.

    Google Scholar

    Xue G H, Li Q, Liu Q, et al. In-depth analysis and comparison on the standards and testing methods for oil contaminated soil of domestic and international[J]. Petrochemical Industry Application, 2019, 38(1): 1-6.

    Google Scholar

    [11] 段旭, 李慧慧, 杨柳晨, 等. 土壤中总石油烃测定——3种前处理方法的对比[J]. 福建分析测试, 2019, 28(3): 47-50. doi: 10.3969/j.issn.1009-8143.2019.03.10

    CrossRef Google Scholar

    Duan X, Li H H, Yang L C, et al. Three pretreatment methods of determination of total petroleum hydrocarbon in soil[J]. Fujian Analysis & Testing, 2019, 28(3): 47-50. doi: 10.3969/j.issn.1009-8143.2019.03.10

    CrossRef Google Scholar

    [12] 苏丽娜, 马晓利, 陈平. 低含量油污染土壤中总石油烃测定萃取方法研究[J]. 应用化工, 2017, 46(8): 1635-1639. doi: 10.3969/j.issn.1671-3206.2017.08.046

    CrossRef Google Scholar

    Su L N, Ma X L, Chen P. Study on extraction and determination of total petroleum hydrocarbons in low oil contaminated soil[J]. Applied Chemical Industry, 2017, 46(8): 1635-1639. doi: 10.3969/j.issn.1671-3206.2017.08.046

    CrossRef Google Scholar

    [13] 曹攽, 胡祖国, 郑存江, 等. 超声萃取-气相色谱法测定土壤中石油烃[J]. 理化检验(化学分册), 2018, 54(3): 275-279.

    Google Scholar

    Cao B, Hu Z G, Zheng C J, et al. Determination of petroleum hydrocarbons in soil by GC combined with ultrasonic extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(3): 275-279.

    Google Scholar

    [14] Wu G Z, Li X G, Coulonc F, et al. Extraction of hydro-carbons from the contaminated soil of PazananⅡ production unit by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2012, 12(72), 298-304.

    Google Scholar

    [15] 张云青, 孟祥龙, 范广宇, 等. 加速溶剂萃取-气相色谱-串联质谱法同时测定贝类中64种农药残留[J]. 色谱, 2020, 38(6): 687-694.

    Google Scholar

    Zhang Y Q, Meng X L, Fan G Y, et al. Simultaneous determination of 64 pesticide residues in shellfish by accelerated solvent extraction coupled with gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(6): 687-694.

    Google Scholar

    [16] 马晓利, 苏丽娜, 庞林, 等. 快速溶剂萃取-红外分光光度法测定低含量油污染土壤中总石油烃的含量[J]. 理化检验(化学分册), 2018, 54(4): 388-391.

    Google Scholar

    Ma X L, Su L N, Pang L, et al. Determination of total petroleum hydrocarbons in low oil contaminated soil by infrared spectrophotometry with accelerated solvent extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 388-391.

    Google Scholar

    [17] 赵昌平, 冯小康, 朱强. 快速溶剂萃取-气相色谱法测定土壤中石油烃(C10~C40)[J]. 理化检验(化学分册), 2020, 56(7): 827-831.

    Google Scholar

    Zhao C P, Feng X K, Zhu Q. GC determination of petroleum hydrocarb (C10-C40) in soil with rapid solvent extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 827-831.

    Google Scholar

    [18] Chen H P, Gao G W, Liu P X. et al. Determination of 16 polycyclic aromatic hydrocarbons in tea by simultaneous dispersive solid-phase extraction and liquid-liquid extraction coupled with gas chromatography-tandem mass spectrometry[J]. Food Analytical Methods, 2016, 9(8): 2374-2384. doi: 10.1007/s12161-016-0427-4

    CrossRef Google Scholar

    [19] Wu G Z, Li X G, Cou L F, et al. Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil[J]. Journal of Hazardous Materials, 2011, 186(1): 533-539. doi: 10.1016/j.jhazmat.2010.11.041

    CrossRef Google Scholar

    [20] Adeniji A O, Okoh O O, Okoh A I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems: A review[J]. Journal of Chemistry, 2017, 2017: 1-13.

    Google Scholar

    [21] 阳艳, 杨伟鹏, 尹善军. 关于土壤中总石油烃检测分析方法研究[J]. 环境与发展, 2018, 30(8): 110-111.

    Google Scholar

    Yang Y, Yang W P, Yin S J. Study on methods for analysis and analysis of total petroleum hydrocarbons in soil[J]. Environmental and Development, 2018, 30(8): 110-111.

    Google Scholar

    [22] 曹小聪, 吴晓晨, 徐文帅, 等. 水和沉积物中石油烃的分析方法及污染特征研究进展[J]. 环境工程技术学报, 2020, 10(5): 871-882.

    Google Scholar

    Cao X C, Wu X C, Xu W S, et al. Research progress of analytical methods and pollution characteristics of petroleum hydrocarbons in water and sediment[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 871-882.

    Google Scholar

    [23] 张晓赟, 尹燕敏, 孙欣阳. 顶空/超声提取法-气相色谱法测定土壤中总石油烃[J]. 安徽农学通报, 2018, 24(17): 62-64. doi: 10.3969/j.issn.1007-7731.2018.17.031

    CrossRef Google Scholar

    Zhang X Y, Yin Y M, Sun X Y, et al. Determination of TPH in soil using headspace GC-FID and ultrasonic extraction GC-FID[J]. Anhui Agricultural Science Bulletin, 2018, 24(17): 62-64. doi: 10.3969/j.issn.1007-7731.2018.17.031

    CrossRef Google Scholar

    [24] 顾亚中, 梁良. 红外分光光度法测定水中石油类物质实验分析[J]. 污染防治技术, 2019, 32(6): 62-64.

    Google Scholar

    Gu Y Z, Liang L. Determination of petroleum substances in water by infrared spectrophotometry[J]. Pollution Control Technology, 2019, 32(6): 62-64.

    Google Scholar

    [25] Paula P, Blurdes M, Atose T, et al. Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography[J]. Chemical Papers, 2012, 66(8): 711-721. doi: 10.2478/s11696-012-0193-8

    CrossRef Google Scholar

    [26] 吴嘉鹏, 楼振纲, 胡笑妍, 等. 紫外法与红外法测定石油类的比对研究[J]. 中国无机分析化学, 2019, 9(6): 78-82. doi: 10.3969/j.issn.2095-1035.2019.06.017

    CrossRef Google Scholar

    Wu J P, Lou Z G, Hu X Y, et al. Comparison of ultraviolet and infrared spectrophotometry in the determination of petroleum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 78-82. doi: 10.3969/j.issn.2095-1035.2019.06.017

    CrossRef Google Scholar

    [27] 王忠东, 王玉田. 激发-发射荧光矩阵结合二阶校正方法检测湖水中多环芳烃[J]. 光学精密工程, 2019, 27(10): 2089-2096.

    Google Scholar

    Wang Z D, Wang Y T. Determination of polycyclic aromatic hydrocabons in lake water using excitation-emission fluorescence matrix coupled with second-order calibration algorithm[J]. Optics and Precision Engineering, 2019, 27(10): 2089-2096.

    Google Scholar

    [28] 王新伟, 钟宁宁, 吕文海, 等. 荧光光谱法快速检测土壤中荧光烃类污染物[J]. 生态环境, 2007, 16(4): 1184-1188. doi: 10.3969/j.issn.1674-5906.2007.04.023

    CrossRef Google Scholar

    Wang X W, Zhong N N, Lv W H, et al. Determination of hydrocarbon pollutant in soil samples by fluorescence spectrum[J]. Ecology and Environment, 2007, 16(4): 1184-1188. doi: 10.3969/j.issn.1674-5906.2007.04.023

    CrossRef Google Scholar

    [29] 韩彬, 林法祥, 丁宇, 等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429-437.

    Google Scholar

    Han B, Lin F X, Ding Y, et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429-437.

    Google Scholar

    [30] 温馨, 张淑荣, 白乙娟, 等. 荧光光谱技术在废水溶解有机物研究中的应用进展[J]. 南水北调与水利科技, 2018, 16(2): 29-37.

    Google Scholar

    Wen X, Zhang S R, Bai Y J, et al. Research progress on the application of fluorescence spectroscopy in studying dissolved organic matters in waste waters[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 29-37.

    Google Scholar

    [31] 王翔, 赵南京, 俞志敏, 等. 土壤有机污染物激光诱导荧光光谱检测方法研究进展[J]. 光谱学与光谱分析, 2018, 38(3): 857-863.

    Google Scholar

    Wang X, Zhao N J, Yu Z M, et al. Detection method progress and development trend of organic pollutants in soil using laser-induced fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(3): 857-863.

    Google Scholar

    [32] 刘玉龙, 黄燕高, 刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探[J]. 岩矿测试, 2019, 38(1): 102-111.

    Google Scholar

    Liu Y L, Huang Y G, Liu F. Analysis of total petroleum hydrocarbon fractions in soils by gas chromatography: Standardized calibration and quantitation method[J]. Rock and Mineral Analysis, 2019, 38(1): 102-111.

    Google Scholar

    [33] Ann A, Michael R, Veronica M, et al. Long-term health effects of early life exposure to tetrachloroethylene (PCE)-contaminated drinking water: Aretrospective cohort study[J]. Environmental Health, 2015, 14(1): 36. doi: 10.1186/s12940-015-0021-z

    CrossRef Google Scholar

    [34] Jelle V, Kurt S, Avima R, et al. Tetrachloroethylene exposure and bladder cancer risk: A meta-analysis of dry-cleaning-worker studies[J]. Environmental Health Perspectives, 2014, 122(7): 661-666. doi: 10.1289/ehp.1307055

    CrossRef Google Scholar

    [35] 杨哲, 王玉田, 陈至坤, 等. 基于温度变量的四维荧光光谱的石油类污染物测定[J]. 光谱学与光谱分析, 2019, 39(8): 2546-2553.

    Google Scholar

    Yang Z, Wang Y T, Chen Z K, et al. Determination of petroleum pollutants by four dimensional fluorescence spectra based on temperature variable[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2546-2553.

    Google Scholar

    [36] Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-A review[J]. River Research & Applications, 2010, 23(6): 631-649.

    Google Scholar

    [37] Kavanagh R J, Burnison B K, Frank R A, et al. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy[J]. Chemosphere, 2009, 76: 120-126. doi: 10.1016/j.chemosphere.2009.02.007

    CrossRef Google Scholar

    [38] Yu V F, Kravtsov D A, Belov S L, et al. Experimental studies of efficient sensing fluorescence radiation bands to detect oil and petroleum product spills[J]. Journal of Physics: Conference Series, 2019, 1399(5): 055037.

    Google Scholar

    [39] Fedotov Y V, Belov M L, Kravtsov D A, et al. Laser fluorescence method for detecting oil pipeline leaks at a wavelength of 355nm[J]. Journal of Optical Technology, 2019, 86(2): 81-85. doi: 10.1364/JOT.86.000081

    CrossRef Google Scholar

    [40] 谷艳红, 左兆陆, 张振振, 等. 土壤石油烃总量三维荧光光谱定量分析方法研究[J]. 中国光学, 2020, 13(4): 852-865.

    Google Scholar

    Gu Y H, Zuo Z L, Zhang Z Z, et al. Algorithmic study of total petroleum hydrocarbons in contaminated soil by three-dimensional excitation-emission matrix fluorescence spectroscopy[J]. Chinese Optics, 2020, 13(4): 852-865.

    Google Scholar

    [41] 李静. 荧光法测定海洋生物体中石油烃[J]. 生物化工, 2019, 5(5): 107-109. doi: 10.3969/j.issn.2096-0387.2019.05.030

    CrossRef Google Scholar

    Li J. Determination of petroleum hydrocarbons in marine organisms by fluorescence method[J]. Biological Chemical Engineering, 2019, 5(5): 107-109. doi: 10.3969/j.issn.2096-0387.2019.05.030

    CrossRef Google Scholar

    [42] 赵江华, 李忠煜, 何峻, 等. 加速溶剂萃取技术在油气化探样品稠环芳烃测定前处理中的应用[J]. 岩矿测试, 2013, 32(5): 791-795. doi: 10.3969/j.issn.0254-5357.2013.05.019

    CrossRef Google Scholar

    Zhao J H, Li Z Y, He J, et al. Applications of accelerated solvent extraction in preparation of polycyclic aromatic hydrocarbons in oil and gas geochemical exploration samples[J]. Rock and Mineral Analysis, 2013, 32(5): 791-795. doi: 10.3969/j.issn.0254-5357.2013.05.019

    CrossRef Google Scholar

    [43] 佟玲, 田芹, 杨志鹏, 等. 沉积物中14种典型人工合成麝香加速溶剂萃取-气相色谱-串联质谱快速分析方法研究[J]. 岩矿测试, 2020, 39(4): 587-596.

    Google Scholar

    Tong L, Tian Q, Yang Z P, et al. Research on the determination of 14 synthetic musks in sediment samples by gas chromatography-tandem mass spectrometry with accelerated solvent extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 587-596.

    Google Scholar

    [44] 李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239-249.

    Google Scholar

    Li Z Y, Li Y G, Li W L, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239-249.

    Google Scholar

    [45] 卢飞龙. 油污土壤中石油烃含量测定方法探究[J]. 云南化工, 2019, 46(6): 122-123.

    Google Scholar

    Lu F L. Study on the determination method of petroleum hydrocarbon content in oil-polluted soil[J]. Yunnan Chemical Technology, 2019, 46(6): 122-123.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(1362) PDF downloads(28) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint