Citation: | WANG Fang, ZHU Dan, LU Li, WEI Jun-qi, PAN Shi-yang. Occurrence of Niobium and Rare Earth Elements in Related Ores by Electron Microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. doi: 10.15898/j.cnki.11-2131/td.202006090086 |
Niobium is a strategic metal with wide applications and plays a very important role in modern steel technology. The average content of Nb2O5 in a niobium-rare earth ore is 0.0855%, and the content of total rare earth (REO) is 1.03%, which is close to the minimum industrial grade requirement of niobium ore. Niobium minerals and rare earth minerals have the characteristics of small particles and complex intergrowths, which makes them difficult to find under a polarized microscope.
To investigate the forms of niobium and rare earth elements.
Electron probe backscatter image, energy spectrum analysis and electron probe spectrum quantitative analysis were used to analyze niobium and rare-earth ore.
Niobium mainly existed in the form of niobite and niobium-bearing rutile. The average content of Nb2O5 in niobite was 78.26% and that in niobium-bearing rutile was 5.26%. Rare earth elements mainly existed in the form of monazite, bastnaite and bastnaesite. The average content of rare earth elements (REO) in monazite, bastnaite and bastnaesite was 64.84%, 57.52% and 70.61%, respectively. Niobium and rare-earth minerals were distributed and dispersed. They were mostly trapped in the gangue minerals such as potassium feldspar, calcite and biotite.
The types and characteristics of the main niobium and rare earth minerals in the ore deposit were identified. This study has important guiding significance for the comprehensive utilization of niobium and rare earth deposits in the future.
[1] | 黎洁, 谢贤, 吕晋芳, 等. 铌矿资源概述及选矿技术研究进展[J]. 金属矿山, 2021(2): 120-126. Li J, Xie X, Lv J F. Overview of niobium resources and research progress in mineral processing technology[J]. Metal Mine, 2021(2): 120-126. |
[2] | 何海洋, 何敏, 李建武. 我国铌矿资源供需形势分析[J]. 中国矿业, 2018, 27(11): 1-5. He H Y, He M, Li J W. Analysis of the niobium resources supply and demand pattern in China[J]. China Mining Magazine, 2018, 27(11): 1-5. |
[3] | 吴昌雄, 方鑫, 鄢华. 武当地区与碱性岩有关的铌、稀土矿特征及找矿方向[J]. 资源环境与工程, 2015, 29(3): 270-298. Wu C X, Fang X, Yan H. Charactersitcis of niobium rare earth deposit and prospecting direction of Wudang[J]. Resources Environment & Engineering, 2015, 29(3): 270-298. |
[4] | 吴凤贤, 李红伟, 程钊, 等. 湖北省竹溪县蒋家堰铌钽矿区地球化学异常特征[J]. 资源环境与工程, 2016, 30(6): 829-834. Wu F X, Li H W, Cheng Z, et al. Characteristics of geochemical anomalies of niobium-tantalum mining area in Jiangjiayan of Zhuxi County, Hubei Province[J]. Resources Environment & Engineering, 2016, 30(6): 829-834. |
[5] | 朱江, 程昌红, 王连训, 等. 南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识[J]. 岩石矿物学杂志, 2017, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008 Zhu J, Cheng C H, Wang L X, et al. Some new knowledge concerning Silurian alkaline magmatism and related Nb-REE mineralization in Zhushan region, South Qinling[J]. Acta Petrologica Et Mineralogica, 2017, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008 |
[6] | 鲁力, 廖经慧, 刘爽, 等. 湖北某稀土矿石工艺矿物学研究[J]. 稀土, 2016, 37(6): 1-8. Lu L, Liao J H, Liu S, et al. Process mineralogy of a rare earth ore in Hubei Province[J]. Chinese Rare Earths, 2016, 37(6): 1-8. |
[7] | 鲁力, 刘爽, 冉晓红, 等. 湖北某黑云母方解石碳酸岩型铌矿石赋存状态及可选性评价[J]. 稀有金属, 2015, 39(9): 831-835. Lu L, Liu S, Ran X H, et al. Occurrence and evaluation of beneficiation of sovite-alvikite niobium ore in Hubei[J]. Chinese Journal of Rare Metals, 2015, 39(9): 831-835. |
[8] | 刘爽, 林璠, 鲁力, 等. 湖北省某矿区复杂稀土矿石选矿实验研究[J]. 稀土, 2016, 37(4): 45-50. Liu S, Lin P, Lu L, et al. Experimental research on the mineral processing technology for a rare earth ore in Hubei[J]. Chinese Rare Earths, 2016, 37(4): 45-50. |
[9] | 刘爽, 康健, 李健, 等. 湖北省两竹地区四个铌矿矿石性质及可选性实验研究[J]. 矿产综合利用, 2021(1): 88-91, 203. Liu S, Kang J, Li J, et al. Study on mineral composition and processing technology of four niobium mines in Liangzhu area, Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 88-91, 203. |
[10] | 张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261-274. Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261-274. |
[11] | 邵兴坤, 尹京武, 杨海涛, 等. 电子探针在新疆拜城碱性花岗岩烧绿石研究中的应用[J]. 电子显微学报, 2011, 30(6): 521-526. doi: 10.3969/j.issn.1000-6281.2011.06.008 Shao X K, Yin J W, Yang H T, et al. Application of EMPA to pyrochlore study from Baicheng alkali granite, Xinjiang[J]. Journal of Chinese Electron Microscopy Society, 2011, 30(6): 521-526. doi: 10.3969/j.issn.1000-6281.2011.06.008 |
[12] | 荆国强, 廉康, 胡菲菲, 等. 利用电子探针研究甘肃陇南赵家庄金矿载金矿物特征[J]. 岩矿测试, 2018, 37(5): 490-498. Jing G Q, Lian K, Hu F F, et al. Application of EMPA to study the characteristics of gold-bearing minerals in the Zhaojiazhuang gold deposit in Longnan, Gansu Province[J]. Rock and Mineral Analysis, 2018, 37(5): 490-498. |
[13] | 王梦亚, 尹京武, 陈浦浦, 等. 陕西洛南长岭正长岩中含稀土矿物的特征[J]. 电子显微学报, 2015, 34(1): 40-47. Wang M Y, Yin J W, Chen P P, et al. Rare earth mineral characteristics of aegirine augite syenite in Changling, Luonan County, Shannxi Province[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(1): 40-47. |
[14] | 张随安, 刘能, 刘文菊, 等. 陕西东南部碱性岩中含铌矿物特征及其成因机制研究[J]. 黄金科学技术, 2017, 25(2): 14-22. Zhang S A, Liu N, Liu W J, et al. Study on the niobium minerals characteristics of alkaline rock and it's genetic mechanism in southeastern Shannxi[J]. Gold Science and Technology, 2017, 25(2): 14-22. |
[15] | 张云海, 陈化凯, 龚书浩, 等. 豫西太平镇稀土矿工艺矿物学研究[J]. 稀土, 2020, 41(1): 117-123. Zhang Y H, Chen H K, Gong S H, et al. Study on process mineralogy of rare earth ore in Taipingzhen, western Henan Province[J]. Chinese Rare Earths, 2020, 41(1): 117-123. |
[16] | 张轰玉, 杨占峰, 焦登铭, 等. 白云鄂博主矿霓石型铌稀土铁矿石中铌在独立矿物中的富集状态和分布规律研究[J]. 有色金属(选矿部分), 2020(1): 6-12. Zhang H Y, Yang Z F, Jiao D M, et al. Distribution regularity and enrichment state of niobium in independent minerals in aegirine-type niobium rare earth iron ore in Bayan Obo main mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1): 6-12. |
[17] | 李波, 梁冬云, 张莉莉, 等. 富磷灰石复杂稀土矿石工艺矿物学研究[J]. 中国稀土学报, 2012, 30(6): 761-765. Li B, Liang D Y, Zhang L L, et al. Process mineralogy of an apatite-rich complex rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2012, 30(6): 761-765. |
[18] | 刘洋. 湖南某地独居石型稀土矿工艺矿物学研究[J]. 矿产保护与利用, 2016(2): 39-42. Liu Y. Process mineralogical study of a monazite-type rare earth in Hunan[J]. Conservation and Utillzation of Mineral Resources, 2016(2): 39-42. |
[19] | 原显顺. 山东微山稀土矿床的稀土矿物学研究[J]. 矿产勘查, 2019, 10(9): 2229-2242. Yuan X S. Rare earth mineralogy study of Weishan rare earth deposit in Shandong Province[J]. Mineral Exploration, 2019, 10(9): 2229-2242. |
[20] | 殷晓. 扫描电镜能谱法测定独居石中铈、镧、钍等元素的含量[J]. 地质与资源, 2015, 24(5): 501-506. Yin X. Content determination of cerium, lanthanum, thorium and other elements in monazite with SEM-EDS analysis[J]. Geology and Resources, 2015, 24(5): 501-506. |
[21] | 范晨子, 詹秀春, 曾普胜, 等. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J]. 岩矿测试, 2015, 34(6): 609-616. Fan C Z, Zhan X C, Zeng P S, et al. Multi-element content analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(6): 609-616. |
[22] | 姚立, 田地, 梁细荣. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54. Yao L, Tian D, Liang X R. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54. |
[23] | 朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1-7. Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1-7. |
[24] | 苟瑞涛. 基于MLA的碳酸岩-碱性杂岩稀土-铌-铁矿矿物学特征研究——以内蒙古白云鄂博矿床为例[D]. 北京: 中国地质大学(北京), 2016: 1-68. Gou R T. Study on mineralogical characteristics of REE-Nb-Fe ore within carbonatites-alkaline complexes based on MLA-A case study for Bayan Obo deposit in Inner Mongolia, China[D]. Beijing: China University of Geosciences (Beijing), 2016: 1-68. |
[25] | 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129. Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129. |
Microphotos of calcitization and biotitization of syenite
Backscattering images and X-ray energy spectrograms of niobium minerals and rare-earth minerals
Dissemination characteristics of niobium, rare earth minerals and other minerals