Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

LIU Xin-xing, ZHANG Hong, ZHANG Juan, SHI Wei-xin, ZHANG Xin-le, CHENG Jia-wei, LU Ke-xuan. A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010
Citation: LIU Xin-xing, ZHANG Hong, ZHANG Juan, SHI Wei-xin, ZHANG Xin-le, CHENG Jia-wei, LU Ke-xuan. A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133. doi: 10.15898/j.cnki.11-2131/td.202005060010

A Study on Alteration Mineral Assemblages and Mineralization Characteristics of a Wunugetushan Porphyry Copper-Molybdenum Deposit in Inner Mongolia, China, Based on Infrared Spectroscopy

More Information
  • BACKGROUND

    In recent years, infrared spectroscopy and thermal infrared spectroscopy have played an important role in mineralogy research, geological exploration and prospecting.

    OBJECTIVES

    To investigate alteration minerals and mineralization features of a Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia.

    METHODS

    Core samples were scanned by infrared spectroscopy core scanning system and analyzed by TSG 8.0.

    RESULTS

    The alteration minerals of the Wunugetushan porphyry copper molybdenum deposit mainly included quartz, potassium feldspar, sericite, illite, kaolinite and montmorillonite. The alteration mineral assemblage showed obvious zonation in space. Quartz+illite+sericite+potassium feldspar had the closest relationship with mineralization and can be used as the standard mineral assemblage for ore prospecting. By comparing with the spatial distribution of Cu and Mo mineralization, the wavelength shift of the absorption peak at 2200nm to shorter wavelengths was closely related to the mineralization center, and the IC value of illite reflects the degree of crystallization and mineralization.

    CONCLUSIONS

    This technical method can be used to quickly delineate the alteration mineral assemblage of porphyry copper-molybdenum ore through the alteration mineral spectrum, thereby improving the exploration efficiency.

  • 加载中
  • [1] Sillitoe R H. Porphyry-copper systems[J]. Economic Geology, 2010, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    [2] Seedorff E, Dilles J H, Proffett J M, et al.Porphyry deposits: Characteristics and origin of hypogene features[C]//Proceedings of Economic Geology 100th Anniversary.2005: 251-298.

    Google Scholar

    [3] Sinclair W D.Porphyry deposits[C]//Goodfellow W D, ed.Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods.Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007: 223-243.

    Google Scholar

    [4] Cooke D R, Hollings P, Wilkinson J J, et al. Geochemistry of porphyry deposits[J]. Treatise on Geochemistry, 2014, 1(3): 357-381.

    Google Scholar

    [5] Holliday J R, Cooke D R.Advances in geological models and exploration methods for copper±gold porphyry deposits[C]//Milkereit B, ed.Proceedings of exploration 07: Fifth decennial international conference on mineral exploration.Toronto: Prospectors and Developers Association of Canada, 2007: 791-809.

    Google Scholar

    [6] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515

    CrossRef Google Scholar

    [7] Hedenquist J W, Richards J P. The influence of geo-chemical techniques on the development of genetic models for porphyry copper deposits[J]. Reviews in Economic Geology, 1998, 10: 235-256.

    Google Scholar

    [8] Thompson A J B, Hauff P L, Robitaille A J, et al. Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy[J]. Society of Economic Geologists Newsletter, 1999, 39: 1-13.

    Google Scholar

    [9] 田丰, 冷成彪, 张兴春, 等. 短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用[J]. 地球科学, 2019, 44(6): 2143-2154.

    Google Scholar

    Tian F, Leng C B, Zhang X C, et al. Application of short wavelength infrared technique in exploration of mineral deposits: A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 44(6): 2143-2154.

    Google Scholar

    [10] Chang Z, Yang Z. Evaluation of inter-instrument variations among short wavelength infrared (SWIR) devices[J]. Economic Geology, 2012, 107(7): 1479-1488. doi: 10.2113/econgeo.107.7.1479

    CrossRef Google Scholar

    [11] 陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643.

    Google Scholar

    Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 2019, 35(12): 3629-3643.

    Google Scholar

    [12] 章革, 连长云, 王润生, 等. 便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J]. 地质通报, 2005, 24(5): 480-484.

    Google Scholar

    Zhang G, Lian C Y, Wang R S, et al. Application of the portable infrared mineral analyser (PIMA) in mineral mapping in the Qulong copper prospect, Mozhugongka County, Tibet[J]. Geological Bulletin of China, 2005, 24(5): 480-484.

    Google Scholar

    [13] 张世涛, 陈华勇, 张小波, 等. 短波红外光谱技术在矽卡岩型矿床中的应用——以鄂东南铜绿山铜铁金矿床为例[J]. 矿床地质, 2017, 36(6): 1263-1288.

    Google Scholar

    Zhang S T, Chen H Y, Zhang X B, et al. Application of short wavelength infrared (SWIR) technique to exploration of skarn deposit: A case study of Tonglvshan Cu-Fe-Au deposit, Edongnan (southeast Hubei) ore concentration area[J]. Mineral Deposits, 2017, 36(6): 1263-1288.

    Google Scholar

    [14] 连长云, 章革, 元春华, 等. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质, 2005, 24(6): 621-637.

    Google Scholar

    Lian C Y, Zhang G, Yuan C H, et al. Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district, Yunnan Province[J]. Mineral Deposits, 2005, 24(6): 621-637.

    Google Scholar

    [15] 谭钢, 常国雄, 佘宏全, 等. 内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 矿床地质, 2010, 29(增刊): 506-508.

    Google Scholar

    Tan G, Chang G X, She H Q, et al. The Re-Os isotope dating of molybdenite and its geological significance in the porphyry copper-molybdenum deposit of Wunugetushan, Inner Mongolia[J]. Mineral Deposit, 2010, 29(Supplement): 506-508.

    Google Scholar

    [16] 陈志广, 张连昌, 万博, 等. 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义[J]. 岩石学报, 2008, 24(1): 115-128.

    Google Scholar

    Chen Z G, Zhang L C, Wan B, et al. Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2008, 24(1): 115-128.

    Google Scholar

    [17] 谭钢. 内蒙古乌奴格吐山斑岩铜钼矿床成矿作用研究[D]. 北京: 中国地质科学院, 2011.

    Google Scholar

    Tan G.The ore-forming processes and mineralization of Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences, 2011.

    Google Scholar

    [18] 李宁. 内蒙古乌奴格吐山铜钼矿成矿侵入岩特征及成矿时代[D]. 北京: 中国地质大学(北京), 2013.

    Google Scholar

    Li N.Study on characteristics of intrusive rocks related to mineralization and metallogenic time of Wunugetushan Cu-Mo deposit, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2013.

    Google Scholar

    [19] 王荣全, 宋雷鹰, 曹书武, 等. 乌奴格吐山斑岩铜-钼矿地球化学特征及评价标志[J]. 矿产与地质, 2007, 21(5): 515-519.

    Google Scholar

    Wang R Q, Song L Y, Cao S W, et al. Geochemical characteristics of the Wunugetushan porphyry Cu-Mo deposit and its evaluation indicators[J]. Mineral Resources and Geology, 2007, 21(5): 515-519.

    Google Scholar

    [20] 尹煜春. 内蒙古乌奴格吐山次火山斑岩型铜-钼矿床控矿因素分析及找矿方向[J]. 矿产与地质, 2007, 21(3): 298-303.

    Google Scholar

    Yin Y C. Ore controlling factors of subvolcanic porphyry type copper molybdenum deposit in Wunugetushan of Inner Mongolia, and its ore prospecting orientation[J]. Mineral Resources and Geology, 2007, 21(3): 298-303.

    Google Scholar

    [21] 王泉. 内蒙古满洲里-新巴尔虎右旗铜银多金属成矿带地质特征、成矿模式及预测[D]. 长春: 吉林大学, 2006.

    Google Scholar

    Wang Q.Geological characteristics, metallogenic model and prognosis of Manzhouli-Xinbaerhuyouqi Cu, Ag, polymetal metallogenic belt in Inner Mongolia[D]. Changchun: Jilin University, 2006.

    Google Scholar

    [22] 张海心. 内蒙古乌奴格吐山铜钼矿床地质特征及成矿模式[D]. 长春: 吉林大学, 2006.

    Google Scholar

    Zhang H X.Geological characteristics and metallogenic model of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[D]. Changchun: Jilin University, 2006.

    Google Scholar

    [23] 黄力军, 刘瑞德, 陆桂福, 等. 乌奴格吐山铜矿物化探异常特征及外围找矿[J]. 物探与化探, 2004, 28(5): 418-420, 424.

    Google Scholar

    Huang L J, Liu R D, Lu G F, et al. Characteristics of geophysical and geochemical anomalies in the Wunugetushan copper deposit and ore prospecting work on the outskirts[J]. Geophysical and Geochemical Exploration, 2004, 28(5): 418-420, 424.

    Google Scholar

    [24] 秦克章, 李惠民, 李伟实, 等. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J]. 地质论评, 1999, 45(2): 180-185.

    Google Scholar

    Chen K Z, Li H M, Li W S, et al. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China[J]. Geological Review, 1999, 45(2): 180-185.

    Google Scholar

    [25] 陈殿芬, 艾永德, 李荫清, 等. 乌奴格吐山斑岩铜钼矿床中金属矿物的特征[J]. 岩石矿物学杂志, 1996, 15(4): 59-63, 65-67.

    Google Scholar

    Chen D F, Ai Y D, Li Y Q, et al. Characteristics of metallic minerals from the Wunugetushan porphyry copper-molybdenum deposit[J]. Acta Petrologica et Mineralogica, 1996, 15(4): 59-63, 65-67.

    Google Scholar

    [26] 秦克章, 王之田. 内蒙古乌奴格吐山铜-钼矿床稀土元素的行为及意义[J]. 地质学报, 1993, 67(4): 323-335.

    Google Scholar

    Qin K Z, Wang Z T. Rare earth element behaviour in the Wunugetushan Cu-Mo deposit, Inner Mongolia, and its significance[J]. Acta Geologica Sinica, 1993, 67(4): 323-335.

    Google Scholar

    [27] 金力夫, 孙凤兴. 内蒙乌奴格吐山斑岩铜钼矿床地质及深部预测[J]. 长春: 长春地质学院学报, 1990(1): 61-67.

    Google Scholar

    Jin L F, Sun F X. Correlation between the northern southern ore sections in Wunugetushan porphyry copper deposit, Inner Mongolia, China[J]. Changchun: Journal of Changchun University of Earth Science, 1990(1): 61-67.

    Google Scholar

    [28] 叶欣, 王莉娟. 乌奴格吐山斑岩铜钼矿床流体包裹体与成矿作用研究[J]. 地质与勘探, 1989(6): 14-21.

    Google Scholar

    Ye X, Wang L J. A study on fluid inclusion and metallogenesis of a porphyry Cu-Mo deposit, Urugetu Hill, Inner Mongolia, China[J]. Geology and Exploration, 1989(6): 14-21.

    Google Scholar

    [29] 郭娜, 刘栋, 唐菊兴, 等. 基于短波红外技术的蚀变矿物特征及勘查模型——以斯弄多银铅锌矿床为例[J]. 矿床地质, 2018, 37(3): 556-570.

    Google Scholar

    Guo N, Liu D, Tang J X, et al. Characteristics of alteration minerals and prospecting model revealed by shortwave infrared technique: Take Sinongduo Ag-Pb-Zn deposit as an example[J]. Mineral Deposits, 2018, 37(3): 556-570.

    Google Scholar

    [30] Commonwealth Scientific and Industrial Research Organi-sation.The specatral geolgist software help of common minerals[M]. 2019.

    Google Scholar

    [31] 黄一入, 郭娜, 郑龙, 等. 基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例[J]. 地球学报, 2017, 38(5): 779-789.

    Google Scholar

    Huang Y R, Guo N, Zheng L, et al. 3D geological alteration mapping based on remote sensing and shortwave infrared technology: A case study of the Sinongduo low-sulfidation epithermal deposit[J]. Acta Geoscientica Sinica, 2017, 38(5): 779-789.

    Google Scholar

    [32] 彭自栋. 甘肃岗岔金矿短波红外找矿应用及伊利石成因矿物学研究[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    Peng Z D.Short wave infrared and illite's genetic mineralogy study of gold deposit in Hezuo, Gansu Province[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [33] 郭娜. 甲玛斑岩-矽卡岩型铜矿床蚀变矿物组合研究——基于高光谱短波红外技术[D]. 成都: 成都理工大学, 2012.

    Google Scholar

    Guo N.The altered mineral assemblage research in Jiama porphyry-skarn copper deposit-Based on hyperspectral high frequency wave infrared technology[D]. Chengdu: Chengdu University of Technology, 2012.

    Google Scholar

    [34] Yang K, Huntington J F, Gemmell J B, et al. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy[J]. Journal of Geochemical Exploring, 2011, 108(2): 143-156. doi: 10.1016/j.gexplo.2011.01.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2350) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint