Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

WAN Jian-jun, PAN Chun-rong, YAN Jie, KANG Qing-qing, HONG Bin-yue, ZHONG Fu-jun, HUANG Hui, DU Jing-yong, YAN Zhao-bin, PAN Jia-yong. EMPA-SEM Study on the Rare Earth Minerals from the Huayangchuan Uranium Rare Polymetallic Deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. doi: 10.15898/j.cnki.11-2131/td.202005060009
Citation: WAN Jian-jun, PAN Chun-rong, YAN Jie, KANG Qing-qing, HONG Bin-yue, ZHONG Fu-jun, HUANG Hui, DU Jing-yong, YAN Zhao-bin, PAN Jia-yong. EMPA-SEM Study on the Rare Earth Minerals from the Huayangchuan Uranium Rare Polymetallic Deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. doi: 10.15898/j.cnki.11-2131/td.202005060009

EMPA-SEM Study on the Rare Earth Minerals from the Huayangchuan Uranium Rare Polymetallic Deposit, Shaanxi Province

More Information
  • BACKGROUND

    The Huayangchua polymetallic deposit is a super-large mineral deposit that has economic endowments of uranium and rare earth resources. The deposit is characterized by the unique ore types and complex mineral assemblage. Systematic mineralogical studies can reveal the main rare-earth minerals and the occurrence of REE, providing an important reference for the comprehensive utilization and metallurgical technology of rare earth elements.

    OBJECTIVES

    To provide new insight for mineralogy using the in-situ observation and analysis technology.

    METHODS

    The field emission scanning electron microscope (SEM), electron microprobe analysis (EMPA) and energy dispersive X-ray spectrometer (EDS) were used to systematically study ore minerals of the Huayangchuan deposit.

    RESULTS

    The rare earth elements in the Huayangchuan deposit mainly occurred in two states. Independent rare-earth minerals included allanite (La2O3 6.49%-7.61%, Ce2O3 11.50%-14.00%), monazite (La2O3 16.30%-21.21%, Ce2O3 32.06%-39.18%), bastnasite (La2O3 12.86%-14.20%, Ce2O3 36.67%-39.90%), fergusonite (La2O3 1.19%-2.11%, Ce2O3 1.29%-2.30%, Y2O3 22.67%-25.88%), and xenotime (La2O3 2.29%-3.58%, Ce2O3 1.89%-2.37%, Y2O3 39.77%-42.80%). REE also occurred as isomorphism in apatite, pyrochlore and sphene.

    CONCLUSIONS

    REE occurs as rare-earth minerals in the Huayangchuan deposit, including allanite, monazite, bastnasite, fergusonite and xenotime, as well as isomorphism in apatite, pyrochlore and sphene. The REEs in the Huayangchuan deposit are dominated by light rare earth elements, such as La and Ce, with minor heavy rare earth element Y.

  • 加载中
  • [1] Chakhmouradian A R, Mumin A H, Demény A, et al. Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): Geological setting, mineralogy and geochemistry[J]. Lithos, 2008, 103: 503-526. doi: 10.1016/j.lithos.2007.11.004

    CrossRef Google Scholar

    [2] Smith M, Kynicky J, Xu C, et al. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu District, China[J]. Lithos, 2018, 308-309: 65-82. doi: 10.1016/j.lithos.2018.02.027

    CrossRef Google Scholar

    [3] 赵芝, 付小方, 任希杰, 等. 四川稀土精矿的稀土元素和微量元素地球化学特征及开发利用意义[J]. 岩矿测试, 2013, 32(5): 810-816.

    Google Scholar

    Zhao Z, Fu X F, Ren X J, et al. Geochemistry of rare earth and trace elements in rare earth concentrate from Sichuan Province and the significance of the exploitation and utilization[J]. Rock and Mineral Analysis, 2013, 32(5): 810-816.

    Google Scholar

    [4] Xu C, Kynicky J, Chakhmouradian A R, et al. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in south Qinling orogen: Miaoya rare-metal deposit, central China[J]. Lithos, 2015, 227: 107-121. doi: 10.1016/j.lithos.2015.03.024

    CrossRef Google Scholar

    [5] 范晨子, 詹秀春, 曾普胜, 等. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J]. 岩矿测试, 2015, 34(6): 609-616.

    Google Scholar

    Fan C Z, Zhan X C, Zeng P S, et al. Multi-element content analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(6): 609-616.

    Google Scholar

    [6] 惠小朝, 蔡煜琦, 何升, 等. 陕西省华阳川铀铌铅矿床碳酸岩岩石学及地球化学特征[J]. 现代地质, 2017, 31(2): 246-257.

    Google Scholar

    Hui X C, Cai Y Q, He S, et al. Petrologic and geochemical characteristics of carbonatites in Huayangchuan U-Nb-Pb deposit, Shaanxi Province[J]. Geoscience, 2017, 31(2): 246-257.

    Google Scholar

    [7] 黄卉, 潘家永, 洪斌跃, 等. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 2020, 39(2): 351-368.

    Google Scholar

    Huang H, Pan J Y, Hong F Y, et al. LA-ICP-MS in-situ U-Pb dating and genesis of Early Cretaceous uraninite in Huayangchuan U-polymetallic deposit, Shaanxi Province[J]. Acta Mineralogica Sinica, 2020, 39(2): 351-368.

    Google Scholar

    [8] 江宏君, 高成, 康清清, 等. 小秦岭华阳川铀铌铅矿床蚀变矿化期次研究[J]. 大地构造与成矿学, 2020, 44(3): 404-421.

    Google Scholar

    Jiang H J, Gao C, Kang Q Q, et al. Mineralization paragenesis of Huayangchuan U-Nb-Pb deposit in the Lesser Qinling[J]. Geotectonica et Metallogenia, 2020, 44(3): 404-421.

    Google Scholar

    [9] Zheng H, Chen H Y, Wu C, et al. Genesis of the supergiant Huayangchuan carbonatite-hosted uranium-polymetallic deposit in the Qinling Orogen, central China[J]. Gondwana Research, 2020, 86: 250-265. doi: 10.1016/j.gr.2020.05.016

    CrossRef Google Scholar

    [10] 康清清, 江宏君, 李鹏, 等. 陕西华阳川铀铌铅矿床矿石矿物学特征[J]. 东华理工大学学报(自然科学版), 2018, 41(2): 111-123.

    Google Scholar

    Kang Q Q, Jiang H J, Li P, et al. Ore mineralogical characteristics of the Huayangchuan U-Nb-Pb deposit[J]. Journal of East China University of Technology (Natural Science), 2018, 41(2): 111-123.

    Google Scholar

    [11] 康清清, 张熊猫, 孟华. 小秦岭西段稀土矿特征及找矿远景浅析[J]. 西北地质, 2020, 53(1): 107-121.

    Google Scholar

    Kang Q Q, Zhang X M, Meng H. Analysis on the characteristics and pospecting of rare earth ore in the western section of Xiao Qinling[J]. Northwestern Geology, 2020, 53(1): 107-121.

    Google Scholar

    [12] Zheng H, Chen H Y, Li D F, et al. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: Constraints from titanite U-Pb and molybdenite Re-Os dating[J]. Geoscience Frontiers, 2020, 11(5): 1581-1592. doi: 10.1016/j.gsf.2020.03.001

    CrossRef Google Scholar

    [13] 惠小朝, 何升. 陕西华阳川铀、铌、铅多金属矿石工艺矿物学研究[J]. 金属矿山, 2016(5): 85-90.

    Google Scholar

    Hui X C, He S. Characteristics of process mineralogy of U-Nb-Pb polymetallic ore in Huayangchuan, Shaanxi Province[J]. Metal Mine, 2016(5): 85-90.

    Google Scholar

    [14] 王林均, 许成, 吴敏, 等. 华阳川碳酸岩流体包裹体研究[J]. 矿物学报, 2011, 31(3): 372-379.

    Google Scholar

    Wang L J, Xu C, Wu M, et al. A study of fluid inclusion from Huayangchuan carbonatite[J]. Acta Mineralogica Sinica, 2011, 31(3): 372-379.

    Google Scholar

    [15] 黄卉, 潘家永, 钟福军, 等. 陕西华阳川铀-多金属矿床早白垩纪晶质铀矿LA-ICP-MS原位U-Pb年龄与成因[J]. 矿物学报, 2020, 40(3): 1-15.

    Google Scholar

    Huang H, Pan J Y, Zhong F J, et al. LA-ICP-MS in-situ U-Pb dating and genesis of Early Cretaceous uraninite in Huayangchuan U-polymetallic deposit, Shaanxi Province[J]. Acta Mineralogica Sinica, 2020, 40(3): 1-15.

    Google Scholar

    [16] 郭国林, 张展适, 刘晓东, 等. 光石沟铀矿床晶质铀矿电子探针化学定年研究[J]. 东华理工大学学报(自然科学版), 2012, 35(4): 309-314.

    Google Scholar

    Guo G L, Zhang Z S, Liu X D, et al. EMPA chemical U-Th-Pb dating of uraninite in guangshigou uranium deposit[J]. Journal of East China University of Technology (Natural Science), 2012, 35(4): 309-314.

    Google Scholar

    [17] 王安东, 万建军, 刘磊, 等. 华北东南缘霍邱群BIF的SEM-EDS和XRD研究及其地质意义[J]. 东华理工大学学报(自然科学版), 2015, 38(1): 23-31.

    Google Scholar

    Wang A D, Wan J J, Liu L, et al. Integrated SEM-EDS and XRD analyses for Huoqiu BIF and their geological implications[J]. Journal of East China University of Technology (Natural Science), 2015, 38(1): 23-31.

    Google Scholar

    [18] 胡勇平, 于学峰, 郑林伟, 等. 高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征[J]. 岩矿测试, 2015, 34(6): 643-651.

    Google Scholar

    Hu Y P, Yu X F, Zheng L W, et al. Application of high-resolution scanning electron microscope and X-ray energy dispersive spectroscope mapping technique to study the composition and morphology of tellurium minerals[J]. Rock and Mineral Analysis, 2015, 34(6): 643-651.

    Google Scholar

    [19] 郭国林, 潘家永, 刘成东, 等. 电子探针化学测年技术及其在地学中的应用[J]. 东华理工学院学报, 2005, 28(1): 39-42.

    Google Scholar

    Guo G L, Pan J Y, Liu C D, et al. Chemical dating technique on the electron-probe microanalysis and its application on Earth science[J]. Journal of East China University of Technology (Natural Science), 2005, 28(1): 39-42.

    Google Scholar

    [20] 姚立, 田地, 梁细荣. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54.

    Google Scholar

    Yao L, Tian D, Liang X R. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54.

    Google Scholar

    [21] Anenburg M, Katzir Y, Rhede D, et al. Rare earth element evolution and migration in plagiogranites: A record preserved in epidote and allanite of the Troodos ophiolite[J]. Contributions to Mineralogy and Petrology, 2015, 169(3): 25. doi: 10.1007/s00410-015-1114-y

    CrossRef Google Scholar

    [22] 陈菲, 苏文, 张铭, 等. 褐帘石的谱学特征[J]. 岩石学报, 2019, 35(1): 233-242.

    Google Scholar

    Chen F, Su W, Zhang M, et al. Spectroscopic characteristics of the allanite[J]. Acta Petrologica Sinica, 2019, 35(1): 233-242.

    Google Scholar

    [23] Yang M J, Liang X L, Ma L Y, et al. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525: 210-217. doi: 10.1016/j.chemgeo.2019.07.024

    CrossRef Google Scholar

    [24] Jan V, Tom R, Nathan R, et al. Experimental alteration of monazite in granitic melt: Variable U-Th-Pb and REE mobility during melt-mediated coupled dissolution-precipitation[J]. Chemical Geology, 2020, 544: 1-16.

    Google Scholar

    [25] 强山峰, 毕诗健, 邓晓东, 等. 豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义[J]. 地球科学——中国地质大学学报, 2013, 38(1): 43-56.

    Google Scholar

    Qiang S F, Bi S J, Deng X D, et al. Monazite U-Th-Pb ages of the Qinnan gold deposit, Xiaoqinling District: Implications for regional metallogenesis and tectonic setting[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(1): 43-56.

    Google Scholar

    [26] 邱昆峰, 杨立强. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析[J]. 岩石学报, 2011, 27(9): 2721-2732.

    Google Scholar

    Qiu K F, Yang L Q. Genetic feature of monazite and its U-Th-Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2721-2732.

    Google Scholar

    [27] 郭春丽, 吴福元. 碎屑沉积岩沉积作用的高精度定年——自生磷钇矿离子探针U-Pb年龄测定[J]. 地学前缘, 2003, 10(2): 327-334.

    Google Scholar

    Guo C L, Wu F Y. High precision dating of deposition of clastic sedimentary rocks-U-Pb SHRIMP dating on authigenic xenotime[J]. Earth Science Frontiers, 2003, 10(2): 327-334.

    Google Scholar

    [28] Anderson A J, Hodges K V, van Soest M C, et al. Helium diffusion in natural xenotime[J]. Geochemistry, Geophysics, Geosystems, 2018, 20(1): 417-433.

    Google Scholar

    [29] 张利敏. 氟碳铈矿中稀土元素的微生物浸出及其机理研究[D]. 北京: 中国地质大学(北京), 2019.

    Google Scholar

    Zhang L M.Bioleaching of rare earth elements from bastnaesite-bearing rock by microbes and its mechanism[D]. Beijing: China University of Geosciences (Beijing), 2019.

    Google Scholar

    [30] 张哨波, 张保平, 张玉明, 等. 河南大庄铌稀土矿床褐钇铌矿的发现及其地质意义[J]. 世界地质, 2020, 39(2): 282-293.

    Google Scholar

    Zhang S B, Zhang B P, Zhang Y M, et al. Discovery of fergusonite from Dazhuang niobium rare earth deposit in Henan Province and its geological significance[J]. Global Geology, 2020, 39(2): 282-293.

    Google Scholar

    [31] 张彦斌, 龚美菱, 李华. 贵州织金地区稀土磷块岩矿床中稀土元素赋存状态[J]. 地球科学与环境学报, 2007, 29(4): 362-368.

    Google Scholar

    Zhang Y B, Gong M L, Li H. Occurrence of REE in rare earth phosphorite in Zhijin Area, Guizhou[J]. Journal of Earth Sciences and Environment, 2007, 29(4): 362-368.

    Google Scholar

    [32] 张杰, 孙传敏, 龚美菱, 等. 贵州织金含稀土生物屑磷块岩稀土元素赋存状态研究[J]. 稀土, 2007, 28(1): 75-79.

    Google Scholar

    Zhang J, Sun C M, Gong M L, et al. Geochemical characteristics and occurrence states of the REE elements of the phosphorite in Xinhua, Zhijin, Guizhou[J]. Chinese Rare Earths, 2007, 28(1): 75-79.

    Google Scholar

    [33] 池汝安, 田君. 风化淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6): 641-650.

    Google Scholar

    Chi R A, Tian J. Review of weathered crust rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(6): 641-650.

    Google Scholar

    [34] 杨晓勇, 赖小东, 任伊苏, 等. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因[J]. 地质学报, 2015, 89(12): 2323-2350.

    Google Scholar

    Yang X Y, Lai X D, Ren Y S, et al. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: Discussion on the origin of Bayan Obo super-large deposit[J]. Acta Geologica Sinica, 2015, 89(12): 2323-2350.

    Google Scholar

    [35] 王倩, 胡宝群, 邓声保, 等. 邹家山铀矿床矿石中的重稀土富集特征[J]. 东华理工大学学报(自然科学版), 2015, 38(3): 240-248.

    Google Scholar

    Wang Q, Hu B Q, Deng S B, et al. Characteristics of heavy REE enrichment in Zoujiashan uranium ore-deposit[J]. Journal of East China University of Technology (Natural Science), 2015, 38(3): 240-248.

    Google Scholar

    [36] 徐喆, 王迪文, 吴正昌, 等. 江西宜春雅山地区铌钽矿床地质特征及成因探讨[J]. 东华理工大学学报(自然科学版), 2018, 41(4): 364-378.

    Google Scholar

    Xu Z, Wang D W, Wu Z C, et al. Geological characteristics and genesis of the Yashan niobium-tantalum deposit at Yichun, Jiangxi Province[J]. Journal of East China University of Technology (Natural Science), 2018, 41(4): 364-378.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2948) PDF downloads(110) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint