Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 4
Article Contents

Wen-lei YANG, Ya-ting SHEN. A Review of Research Progress on the Absorption Mechanism of Arsenic and Agronomic Pathways to Control Arsenic Absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052
Citation: Wen-lei YANG, Ya-ting SHEN. A Review of Research Progress on the Absorption Mechanism of Arsenic and Agronomic Pathways to Control Arsenic Absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. doi: 10.15898/j.cnki.11-2131/td.202004160052

A Review of Research Progress on the Absorption Mechanism of Arsenic and Agronomic Pathways to Control Arsenic Absorption

More Information
  • BACKGROUNDRice is the staple food of about half of the world's population, and the dependence of Asian staple food on rice exceeds 90%. There are varying degrees of arsenic (As) pollution all over the world. As can accumulate in rice and enter the human body, causing health problems. OBJECTIVESTo reveal the mechanism of As absorption in rice. METHODSThe content and species characteristics of As absorbed by rice and the species analysis techniques were reviewed. The mechanisms of As absorption, tolerance and detoxification by rice were summarized. RESULTSThe content of As in rice ranged from a few to several hundred ng/g. The process of As entering the rice from the soil involved complex physical and chemical changes and species transformation. Arsenic mainly existed in the form of arsenate, arsenite, thiol and methyl coordination in rice. Field water management, fertilization and soil amendments controlled the absorption of As in rice. Each technique had their advantages and disadvantages. Soil pH, redox conditions, organic matter and coexisting elements were the key factors affecting As absorption by rice. Agronomic methods can control the absorption of As by rice. Many factors such as arsenic biogeochemistry and the absorption and metabolism of arsenic in rice agroecosystems affect the concentration of arsenic in rice and grain. Comprehensive consideration of the effects of agronomic activities on soil pH, redox conditions, organic matter structure and coexisting elements, and different geographic factors such as soil characteristics and economic factors were the keys to realize the control of arsenic absorption by rice in production practice. CONCLUSIONSComprehensive use of multiple agronomic methods for rice farming is an important way to control the absorption of arsenic in rice in the future. Application of new agronomic methods in the control of arsenic absorption by rice, the impact of climate change on arsenic absorption by rice, and application of non-destructive in situ and in vivo analysis techniques for As speciation analysis, are keys for more scientifically and effectively controlling the arsenic content in rice and reducing the risk of human As exposure on the global scale in the future. These are also the key development directions and challenges in the future.
  • 加载中
  • [1] Liu J, Dhungana B, Cobb G P.Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants[J].Environmental Toxicology & Chemistry, 2018, 37(1):11-20.

    Google Scholar

    [2] Wang Z, Tan X, Lu G, et al.Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity[J].Ecotoxicology Environmental Safety, 2018, 147:266-274. doi: 10.1016/j.ecoenv.2017.08.050

    CrossRef Google Scholar

    [3] Cullen W R, Reimer K J.Arsenic speciation in the environment[J].Chemical Reviews, 1989, 89(4):713-764. doi: 10.1021/cr00094a002

    CrossRef Google Scholar

    [4] Fendorf S, Michael H A, van Geen A.Spatial and temporal variations of groundwater arsenic in south and southeast Asia[J].Science, 2010, 328(5982):1123-1127. doi: 10.1126/science.1172974

    CrossRef Google Scholar

    [5] Zhu Y G, Yoshinaga M, Zhao F J, et al.Earth abides arsenic biotransformations[J].Annual Review of Earth and Planetary Sciences, 2014, 42(1):443-467. doi: 10.1146/annurev-earth-060313-054942

    CrossRef Google Scholar

    [6] 刘景龙, 吴巧丽.原子荧光光谱仪工作温度对水体中砷含量测定的影响[J].岩矿测试, 2019, 38(2):228-232.

    Google Scholar

    Liu J L, Wu Q L.Effect of temperatures on determination ofarsenic in water by atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2019, 38(2):228-232.

    Google Scholar

    [7] Yu L, Witt T, Bonilla M R, et al.New insights into cooked rice quality by measuring modulus, adhesion and cohesion at the level of an individual rice grain[J].Journal of Food Engineering, 2019, 240:21-28. doi: 10.1016/j.jfoodeng.2018.07.010

    CrossRef Google Scholar

    [8] Kumarathilaka P, Seneweera S, Meharg A, et al.Arsenic speciation dynamics in paddy rice soil-water environment:Sources, physico-chemical, and biological factors-A review[J].Water Research, 2018, 140(1):403-414.

    Google Scholar

    [9] Tian F, Fu Q, Zhu Z F, et al.Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits[J].Theoretical and Applied Genetics, 2006, 112(3):570-580. doi: 10.1007/s00122-005-0165-2

    CrossRef Google Scholar

    [10] Xue S, Shi L, Wu C, et al.Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines[J].Environmental Research, 2017, 156:23-30. doi: 10.1016/j.envres.2017.03.014

    CrossRef Google Scholar

    [11] Sohn E.The toxic side of rice[J].Nature, 2014, 514:62-63. doi: 10.1038/514S62a

    CrossRef Google Scholar

    [12] Meharg A A, Williams P N, Adomako E, et al.Geographical variation in total and inorganic arsenic content of polished (white) rice[J].Environmental Science & Technology, 2009, 43(5):1612-1617.

    Google Scholar

    [13] Fu Y R, Chen M L, Bi X Y, et al.Occurrence of arsenic in brown rice and its relationship to soil properties from hainan island, China[J].Environmental Pollution, 2011, 159(7):1757-1762. doi: 10.1016/j.envpol.2011.04.018

    CrossRef Google Scholar

    [14] Fakhri Y, Bjrklund G, Bandpei A M, et al.Concentrations of arsenic and lead in rice (Oryza sativa L.) in iran:A systematic review and carcinogenic risk assessment[J].Food and Chemical Toxicology, 2018, 113:267-277. doi: 10.1016/j.fct.2018.01.018

    CrossRef Google Scholar

    [15] Ye W L, Khan M A, McGrath S P, et al.Phytoreme-diation of arsenic contaminated paddy soils with pteris vittata markedly reduces arsenic uptake by rice[J].Environmental Pollution, 2011, 159(12):3739-3743. doi: 10.1016/j.envpol.2011.07.024

    CrossRef Google Scholar

    [16] Raab A, Baskaran C, Feldmann J, et al.Cooking rice in a high water to rice ratio reduces inorganic arsenic content[J].Journal of Environmental Monitoring, 2009, 11(1):41-44.

    Google Scholar

    [17] Taylor V, Goodale B, Raab A, et al.Human exposure to organic arsenic species from seafood[J].Science of the Total Environment, 2017, 580:266-282. doi: 10.1016/j.scitotenv.2016.12.113

    CrossRef Google Scholar

    [18] Pradeep A, Filip T, Du L G, et al.HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota[J].Biomedical Chromatography, 2012, 26(4):524-533. doi: 10.1002/bmc.1700

    CrossRef Google Scholar

    [19] Zhao F J, Zhu Y G, Meharg A A.Methylated arsenic species in rice:Geographical variation, origin, and uptake mechanisms[J].Environmental Science & Technology, 2013, 47(9):3957-3966.

    Google Scholar

    [20] Williams P N, Price A H, Raab A, et al.Variation in arsenic speciation and concentration in paddy rice related to dietary exposure[J].Environmental Science & Technology, 2005, 39(15):5531-5540.

    Google Scholar

    [21] Batista B L, Souza J M O, de Souza S S, et al.Speciation of arsenic in rice and estimation of daily intake of different arsenic species by brazilians through rice consumption[J].Journal of Hazardous Materials, 2011, 191(1):342-348.

    Google Scholar

    [22] Mandal B K, Suzuki K T, Anzai K.Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of west Bengal, India[J].Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(12):1741-1752.

    Google Scholar

    [23] Hansen H R, Raab A, Price A H, et al.Identification of tetramethylarsonium in rice grains with elevated arsenic content[J].Journal of Environmental Monitoring, 2011, 13(1):32-34.

    Google Scholar

    [24] Quaghebeur M, Rengel Z.The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply[J].Plant Physiology, 2003, 132(3):1600-1609. doi: 10.1104/pp.103.021741

    CrossRef Google Scholar

    [25] Raab A, Schat H, Meharg A A, et al.Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus):Formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J].New Phytologist, 2005, 168(3):551-558. doi: 10.1111/j.1469-8137.2005.01519.x

    CrossRef Google Scholar

    [26] Leermakers M, Baeyens W, de Gieter M, et al.Toxic arsenic compounds in environmental samples:Speciation and validation[J].TrAC Trends in Analytical Chemistry, 2006, 25(1):1-10. doi: 10.1016/j.trac.2005.06.004

    CrossRef Google Scholar

    [27] Halder D, Biswas A, Šlejkovec Z, et al.Arsenic species in raw and cooked rice:Implications for human health in rural Bengal[J].Science of the Total Environment, 2014, 497:200-208.

    Google Scholar

    [28] Dixit G, Singh A P, Kumar A, et al.Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice[J].Journal of Hazardous Materials, 2015, 298:241-251. doi: 10.1016/j.jhazmat.2015.06.008

    CrossRef Google Scholar

    [29] Meharg A A, Hartley W J.Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J].New Phytologist, 2002, 154(1):29-43. doi: 10.1046/j.1469-8137.2002.00363.x

    CrossRef Google Scholar

    [30] Maher W, Foster S, Krikowa F, et al.Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICP-MS:Verification using XANES[J].Environmental Science & Technology, 2013, 47(11):5821-5827.

    Google Scholar

    [31] Pickering I J.Reduction and coordination of arsenic in Indian mustard[J].Plant Physiology, 2000, 122(4):1171-1178.

    Google Scholar

    [32] Webb S M, Gaillard J F O, Ma L Q, et al.XAS speciation of arsenic in a hyper-accumulating fern[J].Environmental Science & Technology, 2003, 37(4):754-760.

    Google Scholar

    [33] Fu Y Q, Yu Z W, Cai K Z, et al.Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects:A review[J].Plant Nutrition & Fertilizer Science, 2010, 16(6):1527-1534.

    Google Scholar

    [34] Zhang C, Ying G E, Yao H, et al.Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils:A review[J].Frontiers of Environmental Science & Engineering, 2012, 56(3):376-381.

    Google Scholar

    [35] Wu C, Ye Z, Hui L, et al.Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?[J].Journal of Experimental Botany, 2012, 63(8):2961-2970. doi: 10.1093/jxb/ers017

    CrossRef Google Scholar

    [36] Yang J, Tam N F Y, Ye Z.Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J].Plant and Soil, 2014, 374:815-828. doi: 10.1007/s11104-013-1922-7

    CrossRef Google Scholar

    [37] Mei X Q, Ye Z H, Wong M H.The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J].Environmental Pollution, 2009, 157(8-9):2550-2557. doi: 10.1016/j.envpol.2009.02.037

    CrossRef Google Scholar

    [38] Wu C, Ye Z, Shu W, et al.Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes[J].Journal of Experimental Botany, 2011, 62(8):2889-2898. doi: 10.1093/jxb/erq462

    CrossRef Google Scholar

    [39] Wang X, Yao H, Wong M H, et al.Dynamic changes in radial oxygen loss and iron plaque formation and their effects on cadmium and arsenic accumulation in rice (Oryza sativa L.)[J].Environmental Geochemistry & Health, 2013, 35(6):779-788.

    Google Scholar

    [40] Li Y, Li H L, Yu Y, et al.Thio-sulfate amendment reduces mercury accumulation in rice (Oryza sativa L.)[J].Plant & Soil, 2018, 430:413-422.

    Google Scholar

    [41] Yamaguchi N, Ohkura T, Takahashi Y, et al.Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix[J].Environmental Science & Technology, 2014, 48(3):1549-1556.

    Google Scholar

    [42] Chen X P, Kong W D, He J Z, et al.Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?[J].Journal of Plant Nutrition & Soil Science, 2008, 171(2):193-199.

    Google Scholar

    [43] Du J, Yan C, Li Z.Formation of iron plaque on mangrove Kandalar.Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation[J].Marine Pollution Bulletin, 2013, 74(1):105-109.

    Google Scholar

    [44] Liu J, Luo L Q.Uptake and transport of Pb across the iron plaque of waterlogged dropwort (Oenanthe javanica DC.) based on micro-XRF and XANES[J].Plant and Soil, 2019, 441(1):191-205.

    Google Scholar

    [45] Liu W J, Zhu Y G, Smith F A, et al.Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?[J].Journal of Experimental Botany, 2004, 403(50):1707-1713.

    Google Scholar

    [46] Huang H, Jia Y, Sun G X, et al.Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J].Environmental Science & Technology, 2012, 46(4):2163-2168.

    Google Scholar

    [47] Chen Z, Zhu Y G, Liu W J, et al.Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots[J].New Phytologist, 2005, 165:91-97.

    Google Scholar

    [48] Xu X Y, McGrath S P, Meharg A A, et al.Growing rice aerobically markedly decreases arsenic accumulation[J].Environmental Science & Technology, 2008, 42(15):5574-5579.

    Google Scholar

    [49] Syu C H, Jiang P Y, Huang H H, et al.Arsenic seque-stration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter[J].Soil Science & Plant Nutrition, 2013, 59(3):463-471.

    Google Scholar

    [50] Lei M, Tie B, Williams P N, et al.Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse[J].Journal of Soils & Sediments, 2011, 11(1):115-123.

    Google Scholar

    [51] Wu C, Huang L, Xue S G, et al.Oxic and anoxic condi-tions affect arsenic (As) accumulation and arsenite transporter expression in rice[J].Chemosphere, 2016, 168(1-7):969-975.

    Google Scholar

    [52] Farooqa M A, Islama F, Aliab B, et al.Arsenic toxicity in plants:Cellular and molecular mechanisms of its transport and metabolism[J].Environmental & Experimental Botany, 2016, 132:42-52.

    Google Scholar

    [53] Seyfferth A L, Webb S M, Andrews J C, et al.Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings[J].American Chemical Society, 2010, 44(21):8108-8113.

    Google Scholar

    [54] Liu W J, Zhu Y G, Hu Y, et al.Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J].Environmental Science & Technology, 2006, 40(18):5730-5736.

    Google Scholar

    [55] Jian F M, Yamaji N, Mitani N, et al.Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29):9931-9935. doi: 10.1073/pnas.0802361105

    CrossRef Google Scholar

    [56] Li R Y, Ago Y, Liu W J, et al.The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J].Plant Physiology, 2009, 150(4):2071-2080. doi: 10.1104/pp.109.140350

    CrossRef Google Scholar

    [57] Jian F M, Yamaji N, Mitani N, et al.An efflux transporter of silicon in rice[J].Nature, 2007, 448(7150):209-212. doi: 10.1038/nature05964

    CrossRef Google Scholar

    [58] Ma J F, Tamai Y, Mitani K.A silicon transporter in rice[J].Nature, 2006, 440(7084):688-691. doi: 10.1038/nature04590

    CrossRef Google Scholar

    [59] Schat H.Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J].Plant Journal, 2006, 45(6):917-929. doi: 10.1111/j.1365-313X.2005.02651.x

    CrossRef Google Scholar

    [60] Duan G L, Zhu Y G, Tong Y P, et al.Characterization of arsenate reductase in the extract of roots and fronds of chinese brake fern, an arsenic hyperaccumulator[J].Plant Physiology, 2005, 138(1):461-469. doi: 10.1104/pp.104.057422

    CrossRef Google Scholar

    [61] Andrea R, H W S, Marcel J, et al.Pentavalent arsenic can bind to biomolecules[J].Angewandte Chemie International Edition, 2007, 46(15):2594-2597. doi: 10.1002/anie.200604805

    CrossRef Google Scholar

    [62] Carey A M, Scheckel K G, Lombi E, et al.Grain unload-ing of arsenic species in rice[J].Plant Physiology, 2010, 152(1):309-319. doi: 10.1104/pp.109.146126

    CrossRef Google Scholar

    [63] Bhattacharyya P, Ghosh A K, Chakraborty A, et al.Arsenic uptake by rice and accumulation in soil amended with municipal solid waste compost[J].Communications in Soil Science & Plant Analysis, 2003, 34(19-20):2779-2790.

    Google Scholar

    [64] Islam M R, Islam S, Jahiruddin M, et al.Effects of irrigation water arsenic in the rice-rice cropping system[J].Journal of Biological Sciences, 2004, 4(4):542-546. doi: 10.3923/jbs.2004.542.546

    CrossRef Google Scholar

    [65] Liu H, Liu G, Zhou Y, et al.Spatial distribution and influence analysis of soil heavy metals in a hilly region of Sichuan Basin[J].Polish Journal of Environmental Studies, 2017, 26(2):725-732. doi: 10.15244/pjoes/65152

    CrossRef Google Scholar

    [66] Adomako E E, Solaiman A R M, Williams P N, et al.Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU[J].Environment International, 2009, 35(3):476-479. doi: 10.1016/j.envint.2008.07.010

    CrossRef Google Scholar

    [67] Lu Y, Adomako E E, Solaiman A R M, et al.Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice[J].Environmental Science & Technology, 2009, 43:1724-1729.

    Google Scholar

    [68] Smith E, Naidu R, Alston A M.Arsenic in the soil environment:A review[J].Advances in Agronomy, 1998, 64:149-195. doi: 10.1016/S0065-2113(08)60504-0

    CrossRef Google Scholar

    [69] Marin A R, Masscheleyn P H, Patrick W H.Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice[J].Plant & Soil, 2003, 152(2):245-253.

    Google Scholar

    [70] Yamaguchi N, Nakamura T, Dong D, et al.Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J].Chemosphere, 2011, 83(7):925-932. doi: 10.1016/j.chemosphere.2011.02.044

    CrossRef Google Scholar

    [71] Toxicology C, Council N, Sciences N A.Arsenic in drink-ing water:2001 update[M].National Academies Press, 2001.

    Google Scholar

    [72] Smedley P, Kinniburgh D.A review of the source, behav-iour and distribution of arsenic in natural waters[J].Applied Geochemistry, 2002, 17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5

    CrossRef Google Scholar

    [73] Bissen M, Frimmel F H.Arsenic-A review.Part Ⅰ:Occurrence, toxicity, speciation, mobility[J].Acta Hydrochimica et Hydrobiologica, 2003, 31(1):9-18. doi: 10.1002/aheh.200390025

    CrossRef Google Scholar

    [74] Delaune R D.The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil[J].Environment International-A Journal of Environmental Science Risk & Health, 1999, 25(5):613-618.

    Google Scholar

    [75] Signes-Pastor A, BurlóF, Mitra K, et al.Arsenic biogeo-chemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil[J].Geoderma, 2007, 137(3-4):504-510. doi: 10.1016/j.geoderma.2006.10.012

    CrossRef Google Scholar

    [76] Ahmed Z U, Panaullah G M, Gauch H, et al.Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh[J].Plant & Soil, 2011, 338(1-2):367-382.

    Google Scholar

    [77] Li F, Zheng Y M, He J Z.Microbes influence the frac-tionation of arsenic in paddy soils with different fertilization regimes[J].Science of the Total Environment, 2009, 407:2631-2640. doi: 10.1016/j.scitotenv.2008.12.021

    CrossRef Google Scholar

    [78] 董会军, 董建芳, 王昕洲, 等.pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J].岩矿测试, 2019, 38(5):510-517.

    Google Scholar

    Dong H J, Dong J F, Wang X Z, et al.Effect of pH on determination of various arsenic in water by HPLC-ICP-MS[J].Rock and Mineral Analysis, 2019, 38(5):510-517.

    Google Scholar

    [79] Dixit S, Hering J G.Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxideminerals:Implications for arsenic mobility[J].Environmental Science & Technology, 2003, 37(18):4182-4189.

    Google Scholar

    [80] Arao T, Kawasaki A, Baba K, et al.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J].Environmental Science & Technology, 2009, 43(24):9361-9367.

    Google Scholar

    [81] Xu X Y, McGrath S P, Meharg A A, et al.Growing rice aerobically markedly decreases arsenic accumulation[J].Environmental Science & Technology, 2008, 42(15):5574-5579.

    Google Scholar

    [82] Zobrist J, Dowdle P R, Davis J A, et al.Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J].Environmental Science & Technology, 2000, 34(22):4747-4753.

    Google Scholar

    [83] Nickson R T, Mcarthur J M, Ravenscroft P, et al.Mechanism of arsenic release to groundwater, Bangladesh and west Bengal[J].Applied Geochemistry, 2000, 15(4):403-413. doi: 10.1016/S0883-2927(99)00086-4

    CrossRef Google Scholar

    [84] Wang S L, Mulligan C N.Effect of natural organic matter on arsenic release from soils and sediments into groundwater[J].Environmental Geochemistry and Health, 2006, 28(3):197-214. doi: 10.1007/s10653-005-9032-y

    CrossRef Google Scholar

    [85] Weng L P, van Riemsdijk W H, Hiemstra T.Effects of fulvic and humic acids on arsenate adsorption to goethite:Experiments and modeling[J].Environmental Science & Technology, 2009, 43(19):7198-7204.

    Google Scholar

    [86] Redman A D, Macalady D L, Ahmann D.Natural organic matter affects arsenic speciation and sorption onto hematite[J].Environmental Science & Technology, 2002, 36(13):2889-2896.

    Google Scholar

    [87] Grafe M, Eick M J, Grossl P R.Adsorption of arsenate(Ⅴ) and arsenite(Ⅲ) on goethite in the presence and absence of dissolved organic carbon[J].Soil Science Society of America Journal, 2001, 65(6):1680-1687. doi: 10.2136/sssaj2001.1680

    CrossRef Google Scholar

    [88] Blodau C.Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J].Science of the Total Environment, 2006, 354(2-3):179-190. doi: 10.1016/j.scitotenv.2005.01.027

    CrossRef Google Scholar

    [89] Kappler A.Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J].Environmental Science & Technology, 2009, 43(10):3639-3645.

    Google Scholar

    [90] Paikaray S, Banerjee S, Mukherji S.Sorption of arsenic onto Vindhyan shales:Role of pyrite and organic carbon[J].Chemical Biology & Drug Design, 2005, 83(2):198-206.

    Google Scholar

    [91] Williams P N, Hao Z, Davison W, et al.Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J].Environmental Science & Technology, 2011, 45(14):6080-6087.

    Google Scholar

    [92] Kathleen A R, Zhong Q C, Mohammad W R, et al.Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh[J].Environmental Science & Technology, 2007, 41(10):3639-3645.

    Google Scholar

    [93] Sigg L.Arsenite and arsenate binding to dissolved humic acids:Influence of pH, type of humic acid, and aluminum[J].Environmental Science & Technology, 2006, 40(19):6015-6020.

    Google Scholar

    [94] Warwick P, Inam E, Evans N.Arsenic's interaction with humic acid[J].Environmental Chemistry, 2005, 2:1-18. doi: 10.1071/EN05017

    CrossRef Google Scholar

    [95] Liu G, Cai Y.Complexation of arsenite with dissolved organic matter:Conditional distribution coefficients and apparent stability constants[J].Chemosphere, 2010, 81(7):890-896. doi: 10.1016/j.chemosphere.2010.08.002

    CrossRef Google Scholar

    [96] Khan S, Reid B J, Li G, et al.Application of biochar to soil reduces cancer risk via rice consumption:A case study in Miaoqian village, Longyan, China[J].Environment International, 2014, 68:154-161. doi: 10.1016/j.envint.2014.03.017

    CrossRef Google Scholar

    [97] Beiyuan J, Awad Y M, Beckers F, et al.Mobility and phytoavailability of As and Pb in a contaminated soil using pine saw dust biochar under systematic change of redox conditions[J].Chemosphere, 2017, 178:110-118. doi: 10.1016/j.chemosphere.2017.03.022

    CrossRef Google Scholar

    [98] Mohan D, Sarswat A, Ok Y S, et al.Organic and inorgan-ic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review[J].Bioresource Technology, 2014, 160:191-202. doi: 10.1016/j.biortech.2014.01.120

    CrossRef Google Scholar

    [99] Hu X, Ding Z, Zimmerman A R, et al.Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis[J].Water Research, 2015, 68:206-216. doi: 10.1016/j.watres.2014.10.009

    CrossRef Google Scholar

    [100] Samsuri A W, Sadeghzadeh F, Sehbardan B J.Adsorption of As(Ⅲ) and As(Ⅴ) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J].Journal of Environmental Chemical Engineering, 2013, 1(4):981-988. doi: 10.1016/j.jece.2013.08.009

    CrossRef Google Scholar

    [101] Macalady D L.Evidence for the aquatic binding of arsenate by natural organic matter:Suspended Fe(Ⅲ)[J].Environmental Science & Technology, 2006, 40(17):5380-5387.

    Google Scholar

    [102] Kappler A.Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As[J].Environmental Science & Technology, 2010, 44(12):4479-4485.

    Google Scholar

    [103] Cai Y.Complexation of arsenite with humic acid in the presence of ferric iron[J].Environmental Science & Technology, 2011, 45(8):3210-3216.

    Google Scholar

    [104] Reza A H M S, Jean J S, Lee M K, et al.Implications of organic matter on arsenic mobilization into groundwater:Evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh[J].Water Research, 2010, 44(17):5556-5574.

    Google Scholar

    [105] Das K.Mobilisation of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic[J].Plant Soil & Environment, 2008, 54(1):30-37.

    Google Scholar

    [106] Jiang W, Hou Q, Yang Z.Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content[J].Environmental Pollution, 2014, 188:159-165. doi: 10.1016/j.envpol.2014.02.014

    CrossRef Google Scholar

    [107] Wu C, Zou Q, Xue S G, et al.Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants[J].Chemosphere, 2016, 165:478-486. doi: 10.1016/j.chemosphere.2016.09.061

    CrossRef Google Scholar

    [108] Zhao F J, McGrath S P, Meharg A A.Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J].Annual Review of Plant Biology, 2010, 61(1):535-559. doi: 10.1146/annurev-arplant-042809-112152

    CrossRef Google Scholar

    [109] Zhang L, Hu B, Li W, et al.OSPT2, a phosphate transporter, is involved in the active uptake of selenite in rice[J].New Phytologist, 2014, 201(4):1183-1191. doi: 10.1111/nph.12596

    CrossRef Google Scholar

    [110] Younoussa A, Wan Y, Yu Y, et al.Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.)[J].Ecotoxicology & Environmental Safety, 2018, 148: 869-875.

    Google Scholar

    [111] Ehlert K, Mikutta C, Kretzschmar R.Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite[J].Environmental Science & Technology, 2014, 48(19):11320-11329.

    Google Scholar

    [112] Lafferty B J, Ginder-Vogel M, Sparks D L.Arsenite oxidation by a poorly crystalline manganese-oxide 1.Stirred-flow experiments[J].Environmental Science & Technology, 2010, 44(22):8460-8466.

    Google Scholar

    [113] Liu W J, Zhu Y G, Smith F.Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite[J].Plant and Soil, 2005, 277(1-2):127-138. doi: 10.1007/s11104-005-6453-4

    CrossRef Google Scholar

    [114] Zhang J, Zhao Q Z, Duan G L, et al.Influence of sulphur on arsenic accumulation and metabolism in rice seedlings[J].Environmental & Experimental Botany, 2011, 72(1):34-40.

    Google Scholar

    [115] Zhao F J, Ma J F, Meharg A A, et al.Arsenic uptake and metabolism in plants[J].New Phytologist, 2008, 181(4):777-794.

    Google Scholar

    [116] Wang Y S, Yang Z M.Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.[J].Plant & Cell Physiology, 2005, 46(12):1915-1923.

    Google Scholar

    [117] Singh H P, Kaur S, Batish D R, et al.Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice)[J].Nitric Oxide Biology & Chemistry, 2009, 20(4):289-297.

    Google Scholar

    [118] Meharg A, Jardine L.Arsenite transport into paddy rice (Oryza sativa) roots[J].New Phytologist, 2002, 157(1):39-44.

    Google Scholar

    [119] Hu P, Huang J, Ouyang Y, et al.Water management affects arsenic and cadmium accumulation in different rice cultivars[J].Environmental Geochemistry and Health, 2013, 35(6):767-778. doi: 10.1007/s10653-013-9533-z

    CrossRef Google Scholar

    [120] Huq S M I, Shila U K, Joardar J C.Arsenic mitigation strategy for rice, using water regime management[J].Land Contamination & Reclamation, 2006, 14(4):805-813.

    Google Scholar

    [121] Honma T, Ohba H, Kaneko A, et al.Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L.cv.Koshihikari) under different water management practices[J].Soil Science and Plant Nutrition, 2016, 62(4):349-356. doi: 10.1080/00380768.2016.1196569

    CrossRef Google Scholar

    [122] Sahrawat K L.Redox potential and pH as major drivers of fertility in submerged rice soils:A conceptual framework for management[J].Communications in Soil Science and Plant Analysis, 2015, 46(13):1597-1606. doi: 10.1080/00103624.2015.1043451

    CrossRef Google Scholar

    [123] Jia Y, Huang H, Sun G, et al.Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil[J].Environmental Science & Technology, 2012, 46(15):8090-8096.

    Google Scholar

    [124] Dittmar J, Voegelin A, Roberts L C, et al.Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh.2.Paddy soil[J].Environmental Science & Technology, 2007, 41(17):5967-5972.

    Google Scholar

    [125] Newbigging A M, Paliwoda R E, Le X C.Rice:Reducing arsenic content by controlling water irrigation[J].Journal of Environmental Sciences-China, 2015, 30(4):129-131.

    Google Scholar

    [126] Morenojimenez E, Meharg A A, Smolders E, et al.Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium[J].Science of the Total Environment, 2014, 485:468-473.

    Google Scholar

    [127] Roberts L C, Hug S J, Dittmar J, et al.Arsenic release from paddy soils during monsoon flooding[J].Nature Geoscience, 2010, 3(1):53-59. doi: 10.1038/ngeo723

    CrossRef Google Scholar

    [128] Basu B, Kundu M, Hedayatullah M D, et al.Mitigation of arsenic in rice through deficit irrigation in field and use of filtered water in kitchen[J].International Journal of Environmental Science and Technology, 2015, 12(6):2065-2070. doi: 10.1007/s13762-014-0568-1

    CrossRef Google Scholar

    [129] Bengough A G, Mckenzie B M, Hallett P D, et al.Root elongation, water stress, and mechanical impedance:A review of limiting stresses and beneficial root tip traits[J].Journal of Experimental Botany, 2011, 62(1):59-68.

    Google Scholar

    [130] Lee C H, Wu C H, Syu C H, et al.Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils[J].Geoderma, 2016, 270:60-67. doi: 10.1016/j.geoderma.2016.01.003

    CrossRef Google Scholar

    [131] Geng C N, Zhu Y G, Liu W J, et al.Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations[J].Aquatic Botany, 2005, 83(4):321-331. doi: 10.1016/j.aquabot.2005.07.003

    CrossRef Google Scholar

    [132] Mew M.Phosphate rock costs, prices and resources interaction[J].Science of the Total Environment, 2016, 542:1008-1012. doi: 10.1016/j.scitotenv.2015.08.045

    CrossRef Google Scholar

    [133] Neset T S S, Cordell D.Global phosphorus scarcity:Identifying synergies for a sustainable future[J].Journal of the Science of Food and Agriculture, 2012, 92(1):2-6. doi: 10.1002/jsfa.4650

    CrossRef Google Scholar

    [134] Charter R, Tabatabai M, Schafer J.Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks[J].Communications in Soil Science and Plant Analysis, 1995, 26(17-18):3051-3062. doi: 10.1080/00103629509369508

    CrossRef Google Scholar

    [135] Fayiga A O, Saha U K.Arsenic hyperaccumulating fern:Implications for remediation of arsenic contaminated soils[J].Geoderma, 2016, 284:132-143. doi: 10.1016/j.geoderma.2016.09.003

    CrossRef Google Scholar

    [136] Fleck A T, Mattusch J, Schenk M K.Silicon decreases the arsenic level in rice grain by limiting arsenite transport[J].Journal of Plant Nutrition and Soil Science, 2013, 176(5):785-794. doi: 10.1002/jpln.201200440

    CrossRef Google Scholar

    [137] Wu C, Zou Q, Xue S, et al.Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL)[J].Chemosphere, 2015, 138:447-453. doi: 10.1016/j.chemosphere.2015.06.081

    CrossRef Google Scholar

    [138] Lee C H, Huang H H, Syu C H, et al.Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application[J].Journal of Hazardous Materials, 2014, 276(15):253-261.

    Google Scholar

    [139] Seyfferth A L, Fendorf S.Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.)[J].Environmental Science & Technology, 2012, 46(24):13176-13183.

    Google Scholar

    [140] Desplanques V, Cary L, Mouret J C, et al.Silicon transfers in a rice field in Camargue (France)[J].Journal of Geochemical Exploration, 2006, 88(1-3):190-193. doi: 10.1016/j.gexplo.2005.08.036

    CrossRef Google Scholar

    [141] Seyfferth A L, Morris A H, Gill R, et al.Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain[J].Journal of Agricultural and Food Chemistry, 2016, 64(19):3760-3766. doi: 10.1021/acs.jafc.6b01201

    CrossRef Google Scholar

    [142] Dixit G, Singh A P, Kumar A, et al.Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves[J].Journal of Hazardous Materials, 2015, 298:241-251. doi: 10.1016/j.jhazmat.2015.06.008

    CrossRef Google Scholar

    [143] Chen S, Sun L, Sun T, et al.Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system[J].Environmental Geochemistry and Health, 2007, 29(5):435-446. doi: 10.1007/s10653-007-9088-y

    CrossRef Google Scholar

    [144] Astolfi S, Zuchi S, Neumann G.Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation[J].Journal of Experimental Botany, 2011, 63:1241-1250.

    Google Scholar

    [145] Singh M, Kushwaha B K, Singh S, et al.Sulphur alters chromium(Ⅵ) toxicity in solanum melongena seedlings:Role of sulphur assimilation and sulphur-containing antioxidants[J].Plant Physiology & Biochemistry, 2017, 112:183-192.

    Google Scholar

    [146] Burton E D, Johnston S G, Kocar B D.Arsenic mobility during flooding of contaminated soil:The effect of microbial sulfate reduction[J].Environmental Science & Technology, 2014, 48(23):13660-13667.

    Google Scholar

    [147] Zhang J, Zhao Q Z, Duan G L, et al.Influence of sulphur on arsenic accumulation and metabolism in rice seedlings[J].Environmental & Experimental Botany, 2011, 72(1):34-40.

    Google Scholar

    [148] Song W Y, Yamaki T, Yamaji N, et al.A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44):699-704.

    Google Scholar

    [149] Batista B L, Nigar M, Mestrot A, et al.Identification and quantification of phytochelatins in roots of rice to long-term exposure:Evidence of individual role on arsenic accumulation and translocation[J].Journal of Experimental Botany, 2014, 65(6):1467-1479. doi: 10.1093/jxb/eru018

    CrossRef Google Scholar

    [150] Srivastava S, Akkarakaran J J, Sounderajan S, et al.Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply:Impact on the expression of transporters and thiol metabolism[J].Geoderma, 2016, 270:33-42. doi: 10.1016/j.geoderma.2015.11.006

    CrossRef Google Scholar

    [151] Kerl C F, Rafferty C, Clemens S, et al.Monothioarsenate uptake, transformation, and translocation in rice plants[J].Environmental Science & Technology, 2018, 52(16):9154-9161.

    Google Scholar

    [152] Planerfriedrich B, Hartig C, Lohmayer R, et al.Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate[J].Environmental Science & Technology, 2015, 49(11):6554-6563.

    Google Scholar

    [153] Planerfriedrich B, Suess E, Scheinost A C, et al.Arsenic speciation in sulfidic waters:Reconciling contradictory spectroscopic and chromatographic evidence[J].Analytical Chemistry, 2010, 82(24):10228-10235. doi: 10.1021/ac1024717

    CrossRef Google Scholar

    [154] Edwardson C F, Planerfriedrich B, Hollibaugh J T.Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria[J].FEMS Microbiology Ecology, 2014, 90(3):858-868. doi: 10.1111/1574-6941.12440

    CrossRef Google Scholar

    [155] Zeng F, Ali S, Zhang H, et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution, 2011, 159(1):84-91. doi: 10.1016/j.envpol.2010.09.019

    CrossRef Google Scholar

    [156] Couture R, Rose J, Kumar N, et al.Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides:A kinetic and spectroscopic investigation[J].Environmental Science & Technology, 2013, 47(11):5652-5659.

    Google Scholar

    [157] Miretzky P, Cirelli A F.Remediation of arsenic-contaminated soils by iron amendments:A review[J].Critical Reviews in Environmental Science and Technology, 2010, 40(2):93-115. doi: 10.1080/10643380802202059

    CrossRef Google Scholar

    [158] Fendorf S, Eick M J, Grossl P, et al.Arsenate and chromate retention mechanisms on goethite.1.Surface structure[J].Environmental Science & Technology, 1997, 31(2):315-320.

    Google Scholar

    [159] Luong V T, Kurz E E C, Hellriegel U, et al.Iron-based subsurface arsenic removal technologies by aeration:A review of the current state and future prospects[J].Water Research, 2018, 133:110-122. doi: 10.1016/j.watres.2018.01.007

    CrossRef Google Scholar

    [160] Matsumoto S, Kasuga J, Taiki N, et al.Inhibition of arsenic accumulation in japanese rice by the application of iron and silicate materials[J].Catena, 2015, 135:328-335. doi: 10.1016/j.catena.2015.07.004

    CrossRef Google Scholar

    [161] Ultra Jr V U, Nakayama A, Tanaka S, et al.Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments[J].Soil Science and Plant Nutrition, 2009, 55(1):160-169. doi: 10.1111/j.1747-0765.2008.00341.x

    CrossRef Google Scholar

    [162] Mladenov N, Zheng Y, Simone B, et al.Dissolved organic matter quality in a shallow aquifer of bangladesh:Implications for arsenic mobility[J].Environmental Science & Technology, 2015, 49(18):10815-10824.

    Google Scholar

    [163] Zeng H, Fisher B, Giammar D E.Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J].Environmental Science & Technology, 2008, 42(1):147-152.

    Google Scholar

    [164] Yu H Y, Wang X, Li F, et al.Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice[J].Environmental Pollution, 2017, 224:136-147. doi: 10.1016/j.envpol.2017.01.072

    CrossRef Google Scholar

    [165] Xu X, Chen C, Wang P, et al.Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution, 2017, 231:37-47. doi: 10.1016/j.envpol.2017.07.084

    CrossRef Google Scholar

    [166] Komárek M, Vaněk A, Ettler V.Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review[J].Environmental Pollution, 2013, 172:9-22. doi: 10.1016/j.envpol.2012.07.045

    CrossRef Google Scholar

    [167] Lee C H, Wang C C, Lin H H, et al.In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil[J].Science of the Total Environment, 2018, 619-620:665-671. doi: 10.1016/j.scitotenv.2017.11.023

    CrossRef Google Scholar

    [168] Jayawardhana Y, Kumarathilaka P, Mayakaduwa S, et al.Characteristics of municipal solid waste biochar:Its potential to be used in environmental remediation[M]//Utilization and Management of Bioresources.2018:209-220.

    Google Scholar

    [169] Hashimoto Y, Kanke Y.Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J].Environmental Pollution, 2018, 238:617-623. doi: 10.1016/j.envpol.2018.03.039

    CrossRef Google Scholar

    [170] Jayawardhana Y, Mayakaduwa S S, Kumarathilaka P, et al.Municipal solid waste-derived biochar for the removal of benzene from landfill leachate[J].Environmental Geochemistry and Health, 2019, 41(4):1-15.

    Google Scholar

    [171] Bandara T, Herath I, Kumarathilaka P, et al.Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil[J].Environmental Geochemistry and Health, 2017, 39(2):391-401. doi: 10.1007/s10653-016-9842-0

    CrossRef Google Scholar

    [172] Herath I, Kumarathilaka P, Navaratne A, et al.Immo-bilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar[J].Journal of Soils and Sediments, 2015, 15(1):126-138. doi: 10.1007/s11368-014-0967-4

    CrossRef Google Scholar

    [173] Wang N, Xue X, Juhasz A L, et al.Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J].Environmental Pollution, 2017, 220:514-522. doi: 10.1016/j.envpol.2016.09.095

    CrossRef Google Scholar

    [174] Yin D, Wang X, Peng B, et al.Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J].Chemosphere, 2017, 186:928-937. doi: 10.1016/j.chemosphere.2017.07.126

    CrossRef Google Scholar

    [175] Kappler A, Wuestner M L, Ruecker A, et al.Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J].Environmental Science and Technology Letters, 2014, 1(8):339-344. doi: 10.1021/ez5002209

    CrossRef Google Scholar

    [176] Liu S, Lu Y, Yang C, et al.Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil[J].Environmental Science and Pollution Research, 2017, 24(30):23815-23824. doi: 10.1007/s11356-017-9994-1

    CrossRef Google Scholar

    [177] Lin L, Gao M, Qiu W, et al.Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments[J].Environmental Pollution, 2017, 231(1):479-486.

    Google Scholar

    [178] Yu Z, Qiu W, Wang F, et al.Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar[J].Chemosphere, 2017, 168:341-349. doi: 10.1016/j.chemosphere.2016.10.069

    CrossRef Google Scholar

    [179] Sardans J, Penuelas J.Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues[J].Environmental Monitoring & Assessment, 2006, 115(1-3):473-498.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(4686) PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint