[1] |
Liu J, Dhungana B, Cobb G P.Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants[J].Environmental Toxicology & Chemistry, 2018, 37(1):11-20.
Google Scholar
|
[2] |
Wang Z, Tan X, Lu G, et al.Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity[J].Ecotoxicology Environmental Safety, 2018, 147:266-274. doi: 10.1016/j.ecoenv.2017.08.050
CrossRef Google Scholar
|
[3] |
Cullen W R, Reimer K J.Arsenic speciation in the environment[J].Chemical Reviews, 1989, 89(4):713-764. doi: 10.1021/cr00094a002
CrossRef Google Scholar
|
[4] |
Fendorf S, Michael H A, van Geen A.Spatial and temporal variations of groundwater arsenic in south and southeast Asia[J].Science, 2010, 328(5982):1123-1127. doi: 10.1126/science.1172974
CrossRef Google Scholar
|
[5] |
Zhu Y G, Yoshinaga M, Zhao F J, et al.Earth abides arsenic biotransformations[J].Annual Review of Earth and Planetary Sciences, 2014, 42(1):443-467. doi: 10.1146/annurev-earth-060313-054942
CrossRef Google Scholar
|
[6] |
刘景龙, 吴巧丽.原子荧光光谱仪工作温度对水体中砷含量测定的影响[J].岩矿测试, 2019, 38(2):228-232.
Google Scholar
Liu J L, Wu Q L.Effect of temperatures on determination ofarsenic in water by atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2019, 38(2):228-232.
Google Scholar
|
[7] |
Yu L, Witt T, Bonilla M R, et al.New insights into cooked rice quality by measuring modulus, adhesion and cohesion at the level of an individual rice grain[J].Journal of Food Engineering, 2019, 240:21-28. doi: 10.1016/j.jfoodeng.2018.07.010
CrossRef Google Scholar
|
[8] |
Kumarathilaka P, Seneweera S, Meharg A, et al.Arsenic speciation dynamics in paddy rice soil-water environment:Sources, physico-chemical, and biological factors-A review[J].Water Research, 2018, 140(1):403-414.
Google Scholar
|
[9] |
Tian F, Fu Q, Zhu Z F, et al.Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits[J].Theoretical and Applied Genetics, 2006, 112(3):570-580. doi: 10.1007/s00122-005-0165-2
CrossRef Google Scholar
|
[10] |
Xue S, Shi L, Wu C, et al.Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines[J].Environmental Research, 2017, 156:23-30. doi: 10.1016/j.envres.2017.03.014
CrossRef Google Scholar
|
[11] |
Sohn E.The toxic side of rice[J].Nature, 2014, 514:62-63. doi: 10.1038/514S62a
CrossRef Google Scholar
|
[12] |
Meharg A A, Williams P N, Adomako E, et al.Geographical variation in total and inorganic arsenic content of polished (white) rice[J].Environmental Science & Technology, 2009, 43(5):1612-1617.
Google Scholar
|
[13] |
Fu Y R, Chen M L, Bi X Y, et al.Occurrence of arsenic in brown rice and its relationship to soil properties from hainan island, China[J].Environmental Pollution, 2011, 159(7):1757-1762. doi: 10.1016/j.envpol.2011.04.018
CrossRef Google Scholar
|
[14] |
Fakhri Y, Bjrklund G, Bandpei A M, et al.Concentrations of arsenic and lead in rice (Oryza sativa L.) in iran:A systematic review and carcinogenic risk assessment[J].Food and Chemical Toxicology, 2018, 113:267-277. doi: 10.1016/j.fct.2018.01.018
CrossRef Google Scholar
|
[15] |
Ye W L, Khan M A, McGrath S P, et al.Phytoreme-diation of arsenic contaminated paddy soils with pteris vittata markedly reduces arsenic uptake by rice[J].Environmental Pollution, 2011, 159(12):3739-3743. doi: 10.1016/j.envpol.2011.07.024
CrossRef Google Scholar
|
[16] |
Raab A, Baskaran C, Feldmann J, et al.Cooking rice in a high water to rice ratio reduces inorganic arsenic content[J].Journal of Environmental Monitoring, 2009, 11(1):41-44.
Google Scholar
|
[17] |
Taylor V, Goodale B, Raab A, et al.Human exposure to organic arsenic species from seafood[J].Science of the Total Environment, 2017, 580:266-282. doi: 10.1016/j.scitotenv.2016.12.113
CrossRef Google Scholar
|
[18] |
Pradeep A, Filip T, Du L G, et al.HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota[J].Biomedical Chromatography, 2012, 26(4):524-533. doi: 10.1002/bmc.1700
CrossRef Google Scholar
|
[19] |
Zhao F J, Zhu Y G, Meharg A A.Methylated arsenic species in rice:Geographical variation, origin, and uptake mechanisms[J].Environmental Science & Technology, 2013, 47(9):3957-3966.
Google Scholar
|
[20] |
Williams P N, Price A H, Raab A, et al.Variation in arsenic speciation and concentration in paddy rice related to dietary exposure[J].Environmental Science & Technology, 2005, 39(15):5531-5540.
Google Scholar
|
[21] |
Batista B L, Souza J M O, de Souza S S, et al.Speciation of arsenic in rice and estimation of daily intake of different arsenic species by brazilians through rice consumption[J].Journal of Hazardous Materials, 2011, 191(1):342-348.
Google Scholar
|
[22] |
Mandal B K, Suzuki K T, Anzai K.Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of west Bengal, India[J].Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(12):1741-1752.
Google Scholar
|
[23] |
Hansen H R, Raab A, Price A H, et al.Identification of tetramethylarsonium in rice grains with elevated arsenic content[J].Journal of Environmental Monitoring, 2011, 13(1):32-34.
Google Scholar
|
[24] |
Quaghebeur M, Rengel Z.The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply[J].Plant Physiology, 2003, 132(3):1600-1609. doi: 10.1104/pp.103.021741
CrossRef Google Scholar
|
[25] |
Raab A, Schat H, Meharg A A, et al.Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus):Formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations[J].New Phytologist, 2005, 168(3):551-558. doi: 10.1111/j.1469-8137.2005.01519.x
CrossRef Google Scholar
|
[26] |
Leermakers M, Baeyens W, de Gieter M, et al.Toxic arsenic compounds in environmental samples:Speciation and validation[J].TrAC Trends in Analytical Chemistry, 2006, 25(1):1-10. doi: 10.1016/j.trac.2005.06.004
CrossRef Google Scholar
|
[27] |
Halder D, Biswas A, Šlejkovec Z, et al.Arsenic species in raw and cooked rice:Implications for human health in rural Bengal[J].Science of the Total Environment, 2014, 497:200-208.
Google Scholar
|
[28] |
Dixit G, Singh A P, Kumar A, et al.Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice[J].Journal of Hazardous Materials, 2015, 298:241-251. doi: 10.1016/j.jhazmat.2015.06.008
CrossRef Google Scholar
|
[29] |
Meharg A A, Hartley W J.Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J].New Phytologist, 2002, 154(1):29-43. doi: 10.1046/j.1469-8137.2002.00363.x
CrossRef Google Scholar
|
[30] |
Maher W, Foster S, Krikowa F, et al.Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICP-MS:Verification using XANES[J].Environmental Science & Technology, 2013, 47(11):5821-5827.
Google Scholar
|
[31] |
Pickering I J.Reduction and coordination of arsenic in Indian mustard[J].Plant Physiology, 2000, 122(4):1171-1178.
Google Scholar
|
[32] |
Webb S M, Gaillard J F O, Ma L Q, et al.XAS speciation of arsenic in a hyper-accumulating fern[J].Environmental Science & Technology, 2003, 37(4):754-760.
Google Scholar
|
[33] |
Fu Y Q, Yu Z W, Cai K Z, et al.Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects:A review[J].Plant Nutrition & Fertilizer Science, 2010, 16(6):1527-1534.
Google Scholar
|
[34] |
Zhang C, Ying G E, Yao H, et al.Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils:A review[J].Frontiers of Environmental Science & Engineering, 2012, 56(3):376-381.
Google Scholar
|
[35] |
Wu C, Ye Z, Hui L, et al.Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?[J].Journal of Experimental Botany, 2012, 63(8):2961-2970. doi: 10.1093/jxb/ers017
CrossRef Google Scholar
|
[36] |
Yang J, Tam N F Y, Ye Z.Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J].Plant and Soil, 2014, 374:815-828. doi: 10.1007/s11104-013-1922-7
CrossRef Google Scholar
|
[37] |
Mei X Q, Ye Z H, Wong M H.The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J].Environmental Pollution, 2009, 157(8-9):2550-2557. doi: 10.1016/j.envpol.2009.02.037
CrossRef Google Scholar
|
[38] |
Wu C, Ye Z, Shu W, et al.Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes[J].Journal of Experimental Botany, 2011, 62(8):2889-2898. doi: 10.1093/jxb/erq462
CrossRef Google Scholar
|
[39] |
Wang X, Yao H, Wong M H, et al.Dynamic changes in radial oxygen loss and iron plaque formation and their effects on cadmium and arsenic accumulation in rice (Oryza sativa L.)[J].Environmental Geochemistry & Health, 2013, 35(6):779-788.
Google Scholar
|
[40] |
Li Y, Li H L, Yu Y, et al.Thio-sulfate amendment reduces mercury accumulation in rice (Oryza sativa L.)[J].Plant & Soil, 2018, 430:413-422.
Google Scholar
|
[41] |
Yamaguchi N, Ohkura T, Takahashi Y, et al.Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix[J].Environmental Science & Technology, 2014, 48(3):1549-1556.
Google Scholar
|
[42] |
Chen X P, Kong W D, He J Z, et al.Do water regimes affect iron-plaque formation and microbial communities in the rhizosphere of paddy rice?[J].Journal of Plant Nutrition & Soil Science, 2008, 171(2):193-199.
Google Scholar
|
[43] |
Du J, Yan C, Li Z.Formation of iron plaque on mangrove Kandalar.Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation[J].Marine Pollution Bulletin, 2013, 74(1):105-109.
Google Scholar
|
[44] |
Liu J, Luo L Q.Uptake and transport of Pb across the iron plaque of waterlogged dropwort (Oenanthe javanica DC.) based on micro-XRF and XANES[J].Plant and Soil, 2019, 441(1):191-205.
Google Scholar
|
[45] |
Liu W J, Zhu Y G, Smith F A, et al.Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture?[J].Journal of Experimental Botany, 2004, 403(50):1707-1713.
Google Scholar
|
[46] |
Huang H, Jia Y, Sun G X, et al.Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J].Environmental Science & Technology, 2012, 46(4):2163-2168.
Google Scholar
|
[47] |
Chen Z, Zhu Y G, Liu W J, et al.Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots[J].New Phytologist, 2005, 165:91-97.
Google Scholar
|
[48] |
Xu X Y, McGrath S P, Meharg A A, et al.Growing rice aerobically markedly decreases arsenic accumulation[J].Environmental Science & Technology, 2008, 42(15):5574-5579.
Google Scholar
|
[49] |
Syu C H, Jiang P Y, Huang H H, et al.Arsenic seque-stration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter[J].Soil Science & Plant Nutrition, 2013, 59(3):463-471.
Google Scholar
|
[50] |
Lei M, Tie B, Williams P N, et al.Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L.) grown in greenhouse[J].Journal of Soils & Sediments, 2011, 11(1):115-123.
Google Scholar
|
[51] |
Wu C, Huang L, Xue S G, et al.Oxic and anoxic condi-tions affect arsenic (As) accumulation and arsenite transporter expression in rice[J].Chemosphere, 2016, 168(1-7):969-975.
Google Scholar
|
[52] |
Farooqa M A, Islama F, Aliab B, et al.Arsenic toxicity in plants:Cellular and molecular mechanisms of its transport and metabolism[J].Environmental & Experimental Botany, 2016, 132:42-52.
Google Scholar
|
[53] |
Seyfferth A L, Webb S M, Andrews J C, et al.Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings[J].American Chemical Society, 2010, 44(21):8108-8113.
Google Scholar
|
[54] |
Liu W J, Zhu Y G, Hu Y, et al.Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J].Environmental Science & Technology, 2006, 40(18):5730-5736.
Google Scholar
|
[55] |
Jian F M, Yamaji N, Mitani N, et al.Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29):9931-9935. doi: 10.1073/pnas.0802361105
CrossRef Google Scholar
|
[56] |
Li R Y, Ago Y, Liu W J, et al.The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J].Plant Physiology, 2009, 150(4):2071-2080. doi: 10.1104/pp.109.140350
CrossRef Google Scholar
|
[57] |
Jian F M, Yamaji N, Mitani N, et al.An efflux transporter of silicon in rice[J].Nature, 2007, 448(7150):209-212. doi: 10.1038/nature05964
CrossRef Google Scholar
|
[58] |
Ma J F, Tamai Y, Mitani K.A silicon transporter in rice[J].Nature, 2006, 440(7084):688-691. doi: 10.1038/nature04590
CrossRef Google Scholar
|
[59] |
Schat H.Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J].Plant Journal, 2006, 45(6):917-929. doi: 10.1111/j.1365-313X.2005.02651.x
CrossRef Google Scholar
|
[60] |
Duan G L, Zhu Y G, Tong Y P, et al.Characterization of arsenate reductase in the extract of roots and fronds of chinese brake fern, an arsenic hyperaccumulator[J].Plant Physiology, 2005, 138(1):461-469. doi: 10.1104/pp.104.057422
CrossRef Google Scholar
|
[61] |
Andrea R, H W S, Marcel J, et al.Pentavalent arsenic can bind to biomolecules[J].Angewandte Chemie International Edition, 2007, 46(15):2594-2597. doi: 10.1002/anie.200604805
CrossRef Google Scholar
|
[62] |
Carey A M, Scheckel K G, Lombi E, et al.Grain unload-ing of arsenic species in rice[J].Plant Physiology, 2010, 152(1):309-319. doi: 10.1104/pp.109.146126
CrossRef Google Scholar
|
[63] |
Bhattacharyya P, Ghosh A K, Chakraborty A, et al.Arsenic uptake by rice and accumulation in soil amended with municipal solid waste compost[J].Communications in Soil Science & Plant Analysis, 2003, 34(19-20):2779-2790.
Google Scholar
|
[64] |
Islam M R, Islam S, Jahiruddin M, et al.Effects of irrigation water arsenic in the rice-rice cropping system[J].Journal of Biological Sciences, 2004, 4(4):542-546. doi: 10.3923/jbs.2004.542.546
CrossRef Google Scholar
|
[65] |
Liu H, Liu G, Zhou Y, et al.Spatial distribution and influence analysis of soil heavy metals in a hilly region of Sichuan Basin[J].Polish Journal of Environmental Studies, 2017, 26(2):725-732. doi: 10.15244/pjoes/65152
CrossRef Google Scholar
|
[66] |
Adomako E E, Solaiman A R M, Williams P N, et al.Enhanced transfer of arsenic to grain for Bangladesh grown rice compared to US and EU[J].Environment International, 2009, 35(3):476-479. doi: 10.1016/j.envint.2008.07.010
CrossRef Google Scholar
|
[67] |
Lu Y, Adomako E E, Solaiman A R M, et al.Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice[J].Environmental Science & Technology, 2009, 43:1724-1729.
Google Scholar
|
[68] |
Smith E, Naidu R, Alston A M.Arsenic in the soil environment:A review[J].Advances in Agronomy, 1998, 64:149-195. doi: 10.1016/S0065-2113(08)60504-0
CrossRef Google Scholar
|
[69] |
Marin A R, Masscheleyn P H, Patrick W H.Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice[J].Plant & Soil, 2003, 152(2):245-253.
Google Scholar
|
[70] |
Yamaguchi N, Nakamura T, Dong D, et al.Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J].Chemosphere, 2011, 83(7):925-932. doi: 10.1016/j.chemosphere.2011.02.044
CrossRef Google Scholar
|
[71] |
Toxicology C, Council N, Sciences N A.Arsenic in drink-ing water:2001 update[M].National Academies Press, 2001.
Google Scholar
|
[72] |
Smedley P, Kinniburgh D.A review of the source, behav-iour and distribution of arsenic in natural waters[J].Applied Geochemistry, 2002, 17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
CrossRef Google Scholar
|
[73] |
Bissen M, Frimmel F H.Arsenic-A review.Part Ⅰ:Occurrence, toxicity, speciation, mobility[J].Acta Hydrochimica et Hydrobiologica, 2003, 31(1):9-18. doi: 10.1002/aheh.200390025
CrossRef Google Scholar
|
[74] |
Delaune R D.The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil[J].Environment International-A Journal of Environmental Science Risk & Health, 1999, 25(5):613-618.
Google Scholar
|
[75] |
Signes-Pastor A, BurlóF, Mitra K, et al.Arsenic biogeo-chemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil[J].Geoderma, 2007, 137(3-4):504-510. doi: 10.1016/j.geoderma.2006.10.012
CrossRef Google Scholar
|
[76] |
Ahmed Z U, Panaullah G M, Gauch H, et al.Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh[J].Plant & Soil, 2011, 338(1-2):367-382.
Google Scholar
|
[77] |
Li F, Zheng Y M, He J Z.Microbes influence the frac-tionation of arsenic in paddy soils with different fertilization regimes[J].Science of the Total Environment, 2009, 407:2631-2640. doi: 10.1016/j.scitotenv.2008.12.021
CrossRef Google Scholar
|
[78] |
董会军, 董建芳, 王昕洲, 等.pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J].岩矿测试, 2019, 38(5):510-517.
Google Scholar
Dong H J, Dong J F, Wang X Z, et al.Effect of pH on determination of various arsenic in water by HPLC-ICP-MS[J].Rock and Mineral Analysis, 2019, 38(5):510-517.
Google Scholar
|
[79] |
Dixit S, Hering J G.Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxideminerals:Implications for arsenic mobility[J].Environmental Science & Technology, 2003, 37(18):4182-4189.
Google Scholar
|
[80] |
Arao T, Kawasaki A, Baba K, et al.Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J].Environmental Science & Technology, 2009, 43(24):9361-9367.
Google Scholar
|
[81] |
Xu X Y, McGrath S P, Meharg A A, et al.Growing rice aerobically markedly decreases arsenic accumulation[J].Environmental Science & Technology, 2008, 42(15):5574-5579.
Google Scholar
|
[82] |
Zobrist J, Dowdle P R, Davis J A, et al.Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J].Environmental Science & Technology, 2000, 34(22):4747-4753.
Google Scholar
|
[83] |
Nickson R T, Mcarthur J M, Ravenscroft P, et al.Mechanism of arsenic release to groundwater, Bangladesh and west Bengal[J].Applied Geochemistry, 2000, 15(4):403-413. doi: 10.1016/S0883-2927(99)00086-4
CrossRef Google Scholar
|
[84] |
Wang S L, Mulligan C N.Effect of natural organic matter on arsenic release from soils and sediments into groundwater[J].Environmental Geochemistry and Health, 2006, 28(3):197-214. doi: 10.1007/s10653-005-9032-y
CrossRef Google Scholar
|
[85] |
Weng L P, van Riemsdijk W H, Hiemstra T.Effects of fulvic and humic acids on arsenate adsorption to goethite:Experiments and modeling[J].Environmental Science & Technology, 2009, 43(19):7198-7204.
Google Scholar
|
[86] |
Redman A D, Macalady D L, Ahmann D.Natural organic matter affects arsenic speciation and sorption onto hematite[J].Environmental Science & Technology, 2002, 36(13):2889-2896.
Google Scholar
|
[87] |
Grafe M, Eick M J, Grossl P R.Adsorption of arsenate(Ⅴ) and arsenite(Ⅲ) on goethite in the presence and absence of dissolved organic carbon[J].Soil Science Society of America Journal, 2001, 65(6):1680-1687. doi: 10.2136/sssaj2001.1680
CrossRef Google Scholar
|
[88] |
Blodau C.Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J].Science of the Total Environment, 2006, 354(2-3):179-190. doi: 10.1016/j.scitotenv.2005.01.027
CrossRef Google Scholar
|
[89] |
Kappler A.Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J].Environmental Science & Technology, 2009, 43(10):3639-3645.
Google Scholar
|
[90] |
Paikaray S, Banerjee S, Mukherji S.Sorption of arsenic onto Vindhyan shales:Role of pyrite and organic carbon[J].Chemical Biology & Drug Design, 2005, 83(2):198-206.
Google Scholar
|
[91] |
Williams P N, Hao Z, Davison W, et al.Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J].Environmental Science & Technology, 2011, 45(14):6080-6087.
Google Scholar
|
[92] |
Kathleen A R, Zhong Q C, Mohammad W R, et al.Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh[J].Environmental Science & Technology, 2007, 41(10):3639-3645.
Google Scholar
|
[93] |
Sigg L.Arsenite and arsenate binding to dissolved humic acids:Influence of pH, type of humic acid, and aluminum[J].Environmental Science & Technology, 2006, 40(19):6015-6020.
Google Scholar
|
[94] |
Warwick P, Inam E, Evans N.Arsenic's interaction with humic acid[J].Environmental Chemistry, 2005, 2:1-18. doi: 10.1071/EN05017
CrossRef Google Scholar
|
[95] |
Liu G, Cai Y.Complexation of arsenite with dissolved organic matter:Conditional distribution coefficients and apparent stability constants[J].Chemosphere, 2010, 81(7):890-896. doi: 10.1016/j.chemosphere.2010.08.002
CrossRef Google Scholar
|
[96] |
Khan S, Reid B J, Li G, et al.Application of biochar to soil reduces cancer risk via rice consumption:A case study in Miaoqian village, Longyan, China[J].Environment International, 2014, 68:154-161. doi: 10.1016/j.envint.2014.03.017
CrossRef Google Scholar
|
[97] |
Beiyuan J, Awad Y M, Beckers F, et al.Mobility and phytoavailability of As and Pb in a contaminated soil using pine saw dust biochar under systematic change of redox conditions[J].Chemosphere, 2017, 178:110-118. doi: 10.1016/j.chemosphere.2017.03.022
CrossRef Google Scholar
|
[98] |
Mohan D, Sarswat A, Ok Y S, et al.Organic and inorgan-ic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review[J].Bioresource Technology, 2014, 160:191-202. doi: 10.1016/j.biortech.2014.01.120
CrossRef Google Scholar
|
[99] |
Hu X, Ding Z, Zimmerman A R, et al.Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis[J].Water Research, 2015, 68:206-216. doi: 10.1016/j.watres.2014.10.009
CrossRef Google Scholar
|
[100] |
Samsuri A W, Sadeghzadeh F, Sehbardan B J.Adsorption of As(Ⅲ) and As(Ⅴ) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J].Journal of Environmental Chemical Engineering, 2013, 1(4):981-988. doi: 10.1016/j.jece.2013.08.009
CrossRef Google Scholar
|
[101] |
Macalady D L.Evidence for the aquatic binding of arsenate by natural organic matter:Suspended Fe(Ⅲ)[J].Environmental Science & Technology, 2006, 40(17):5380-5387.
Google Scholar
|
[102] |
Kappler A.Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As[J].Environmental Science & Technology, 2010, 44(12):4479-4485.
Google Scholar
|
[103] |
Cai Y.Complexation of arsenite with humic acid in the presence of ferric iron[J].Environmental Science & Technology, 2011, 45(8):3210-3216.
Google Scholar
|
[104] |
Reza A H M S, Jean J S, Lee M K, et al.Implications of organic matter on arsenic mobilization into groundwater:Evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh[J].Water Research, 2010, 44(17):5556-5574.
Google Scholar
|
[105] |
Das K.Mobilisation of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic[J].Plant Soil & Environment, 2008, 54(1):30-37.
Google Scholar
|
[106] |
Jiang W, Hou Q, Yang Z.Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content[J].Environmental Pollution, 2014, 188:159-165. doi: 10.1016/j.envpol.2014.02.014
CrossRef Google Scholar
|
[107] |
Wu C, Zou Q, Xue S G, et al.Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants[J].Chemosphere, 2016, 165:478-486. doi: 10.1016/j.chemosphere.2016.09.061
CrossRef Google Scholar
|
[108] |
Zhao F J, McGrath S P, Meharg A A.Arsenic as a food chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies[J].Annual Review of Plant Biology, 2010, 61(1):535-559. doi: 10.1146/annurev-arplant-042809-112152
CrossRef Google Scholar
|
[109] |
Zhang L, Hu B, Li W, et al.OSPT2, a phosphate transporter, is involved in the active uptake of selenite in rice[J].New Phytologist, 2014, 201(4):1183-1191. doi: 10.1111/nph.12596
CrossRef Google Scholar
|
[110] |
Younoussa A, Wan Y, Yu Y, et al.Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.)[J].Ecotoxicology & Environmental Safety, 2018, 148: 869-875.
Google Scholar
|
[111] |
Ehlert K, Mikutta C, Kretzschmar R.Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite[J].Environmental Science & Technology, 2014, 48(19):11320-11329.
Google Scholar
|
[112] |
Lafferty B J, Ginder-Vogel M, Sparks D L.Arsenite oxidation by a poorly crystalline manganese-oxide 1.Stirred-flow experiments[J].Environmental Science & Technology, 2010, 44(22):8460-8466.
Google Scholar
|
[113] |
Liu W J, Zhu Y G, Smith F.Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite[J].Plant and Soil, 2005, 277(1-2):127-138. doi: 10.1007/s11104-005-6453-4
CrossRef Google Scholar
|
[114] |
Zhang J, Zhao Q Z, Duan G L, et al.Influence of sulphur on arsenic accumulation and metabolism in rice seedlings[J].Environmental & Experimental Botany, 2011, 72(1):34-40.
Google Scholar
|
[115] |
Zhao F J, Ma J F, Meharg A A, et al.Arsenic uptake and metabolism in plants[J].New Phytologist, 2008, 181(4):777-794.
Google Scholar
|
[116] |
Wang Y S, Yang Z M.Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L.[J].Plant & Cell Physiology, 2005, 46(12):1915-1923.
Google Scholar
|
[117] |
Singh H P, Kaur S, Batish D R, et al.Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice)[J].Nitric Oxide Biology & Chemistry, 2009, 20(4):289-297.
Google Scholar
|
[118] |
Meharg A, Jardine L.Arsenite transport into paddy rice (Oryza sativa) roots[J].New Phytologist, 2002, 157(1):39-44.
Google Scholar
|
[119] |
Hu P, Huang J, Ouyang Y, et al.Water management affects arsenic and cadmium accumulation in different rice cultivars[J].Environmental Geochemistry and Health, 2013, 35(6):767-778. doi: 10.1007/s10653-013-9533-z
CrossRef Google Scholar
|
[120] |
Huq S M I, Shila U K, Joardar J C.Arsenic mitigation strategy for rice, using water regime management[J].Land Contamination & Reclamation, 2006, 14(4):805-813.
Google Scholar
|
[121] |
Honma T, Ohba H, Kaneko A, et al.Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L.cv.Koshihikari) under different water management practices[J].Soil Science and Plant Nutrition, 2016, 62(4):349-356. doi: 10.1080/00380768.2016.1196569
CrossRef Google Scholar
|
[122] |
Sahrawat K L.Redox potential and pH as major drivers of fertility in submerged rice soils:A conceptual framework for management[J].Communications in Soil Science and Plant Analysis, 2015, 46(13):1597-1606. doi: 10.1080/00103624.2015.1043451
CrossRef Google Scholar
|
[123] |
Jia Y, Huang H, Sun G, et al.Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil[J].Environmental Science & Technology, 2012, 46(15):8090-8096.
Google Scholar
|
[124] |
Dittmar J, Voegelin A, Roberts L C, et al.Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh.2.Paddy soil[J].Environmental Science & Technology, 2007, 41(17):5967-5972.
Google Scholar
|
[125] |
Newbigging A M, Paliwoda R E, Le X C.Rice:Reducing arsenic content by controlling water irrigation[J].Journal of Environmental Sciences-China, 2015, 30(4):129-131.
Google Scholar
|
[126] |
Morenojimenez E, Meharg A A, Smolders E, et al.Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium[J].Science of the Total Environment, 2014, 485:468-473.
Google Scholar
|
[127] |
Roberts L C, Hug S J, Dittmar J, et al.Arsenic release from paddy soils during monsoon flooding[J].Nature Geoscience, 2010, 3(1):53-59. doi: 10.1038/ngeo723
CrossRef Google Scholar
|
[128] |
Basu B, Kundu M, Hedayatullah M D, et al.Mitigation of arsenic in rice through deficit irrigation in field and use of filtered water in kitchen[J].International Journal of Environmental Science and Technology, 2015, 12(6):2065-2070. doi: 10.1007/s13762-014-0568-1
CrossRef Google Scholar
|
[129] |
Bengough A G, Mckenzie B M, Hallett P D, et al.Root elongation, water stress, and mechanical impedance:A review of limiting stresses and beneficial root tip traits[J].Journal of Experimental Botany, 2011, 62(1):59-68.
Google Scholar
|
[130] |
Lee C H, Wu C H, Syu C H, et al.Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils[J].Geoderma, 2016, 270:60-67. doi: 10.1016/j.geoderma.2016.01.003
CrossRef Google Scholar
|
[131] |
Geng C N, Zhu Y G, Liu W J, et al.Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations[J].Aquatic Botany, 2005, 83(4):321-331. doi: 10.1016/j.aquabot.2005.07.003
CrossRef Google Scholar
|
[132] |
Mew M.Phosphate rock costs, prices and resources interaction[J].Science of the Total Environment, 2016, 542:1008-1012. doi: 10.1016/j.scitotenv.2015.08.045
CrossRef Google Scholar
|
[133] |
Neset T S S, Cordell D.Global phosphorus scarcity:Identifying synergies for a sustainable future[J].Journal of the Science of Food and Agriculture, 2012, 92(1):2-6. doi: 10.1002/jsfa.4650
CrossRef Google Scholar
|
[134] |
Charter R, Tabatabai M, Schafer J.Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks[J].Communications in Soil Science and Plant Analysis, 1995, 26(17-18):3051-3062. doi: 10.1080/00103629509369508
CrossRef Google Scholar
|
[135] |
Fayiga A O, Saha U K.Arsenic hyperaccumulating fern:Implications for remediation of arsenic contaminated soils[J].Geoderma, 2016, 284:132-143. doi: 10.1016/j.geoderma.2016.09.003
CrossRef Google Scholar
|
[136] |
Fleck A T, Mattusch J, Schenk M K.Silicon decreases the arsenic level in rice grain by limiting arsenite transport[J].Journal of Plant Nutrition and Soil Science, 2013, 176(5):785-794. doi: 10.1002/jpln.201200440
CrossRef Google Scholar
|
[137] |
Wu C, Zou Q, Xue S, et al.Effects of silicon (Si) on arsenic (As) accumulation and speciation in rice (Oryza sativa L.) genotypes with different radial oxygen loss (ROL)[J].Chemosphere, 2015, 138:447-453. doi: 10.1016/j.chemosphere.2015.06.081
CrossRef Google Scholar
|
[138] |
Lee C H, Huang H H, Syu C H, et al.Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application[J].Journal of Hazardous Materials, 2014, 276(15):253-261.
Google Scholar
|
[139] |
Seyfferth A L, Fendorf S.Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.)[J].Environmental Science & Technology, 2012, 46(24):13176-13183.
Google Scholar
|
[140] |
Desplanques V, Cary L, Mouret J C, et al.Silicon transfers in a rice field in Camargue (France)[J].Journal of Geochemical Exploration, 2006, 88(1-3):190-193. doi: 10.1016/j.gexplo.2005.08.036
CrossRef Google Scholar
|
[141] |
Seyfferth A L, Morris A H, Gill R, et al.Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain[J].Journal of Agricultural and Food Chemistry, 2016, 64(19):3760-3766. doi: 10.1021/acs.jafc.6b01201
CrossRef Google Scholar
|
[142] |
Dixit G, Singh A P, Kumar A, et al.Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves[J].Journal of Hazardous Materials, 2015, 298:241-251. doi: 10.1016/j.jhazmat.2015.06.008
CrossRef Google Scholar
|
[143] |
Chen S, Sun L, Sun T, et al.Interaction between cadmium, lead and potassium fertilizer (K2SO4) in a soil-plant system[J].Environmental Geochemistry and Health, 2007, 29(5):435-446. doi: 10.1007/s10653-007-9088-y
CrossRef Google Scholar
|
[144] |
Astolfi S, Zuchi S, Neumann G.Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation[J].Journal of Experimental Botany, 2011, 63:1241-1250.
Google Scholar
|
[145] |
Singh M, Kushwaha B K, Singh S, et al.Sulphur alters chromium(Ⅵ) toxicity in solanum melongena seedlings:Role of sulphur assimilation and sulphur-containing antioxidants[J].Plant Physiology & Biochemistry, 2017, 112:183-192.
Google Scholar
|
[146] |
Burton E D, Johnston S G, Kocar B D.Arsenic mobility during flooding of contaminated soil:The effect of microbial sulfate reduction[J].Environmental Science & Technology, 2014, 48(23):13660-13667.
Google Scholar
|
[147] |
Zhang J, Zhao Q Z, Duan G L, et al.Influence of sulphur on arsenic accumulation and metabolism in rice seedlings[J].Environmental & Experimental Botany, 2011, 72(1):34-40.
Google Scholar
|
[148] |
Song W Y, Yamaki T, Yamaji N, et al.A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44):699-704.
Google Scholar
|
[149] |
Batista B L, Nigar M, Mestrot A, et al.Identification and quantification of phytochelatins in roots of rice to long-term exposure:Evidence of individual role on arsenic accumulation and translocation[J].Journal of Experimental Botany, 2014, 65(6):1467-1479. doi: 10.1093/jxb/eru018
CrossRef Google Scholar
|
[150] |
Srivastava S, Akkarakaran J J, Sounderajan S, et al.Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply:Impact on the expression of transporters and thiol metabolism[J].Geoderma, 2016, 270:33-42. doi: 10.1016/j.geoderma.2015.11.006
CrossRef Google Scholar
|
[151] |
Kerl C F, Rafferty C, Clemens S, et al.Monothioarsenate uptake, transformation, and translocation in rice plants[J].Environmental Science & Technology, 2018, 52(16):9154-9161.
Google Scholar
|
[152] |
Planerfriedrich B, Hartig C, Lohmayer R, et al.Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate[J].Environmental Science & Technology, 2015, 49(11):6554-6563.
Google Scholar
|
[153] |
Planerfriedrich B, Suess E, Scheinost A C, et al.Arsenic speciation in sulfidic waters:Reconciling contradictory spectroscopic and chromatographic evidence[J].Analytical Chemistry, 2010, 82(24):10228-10235. doi: 10.1021/ac1024717
CrossRef Google Scholar
|
[154] |
Edwardson C F, Planerfriedrich B, Hollibaugh J T.Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria[J].FEMS Microbiology Ecology, 2014, 90(3):858-868. doi: 10.1111/1574-6941.12440
CrossRef Google Scholar
|
[155] |
Zeng F, Ali S, Zhang H, et al.The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution, 2011, 159(1):84-91. doi: 10.1016/j.envpol.2010.09.019
CrossRef Google Scholar
|
[156] |
Couture R, Rose J, Kumar N, et al.Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides:A kinetic and spectroscopic investigation[J].Environmental Science & Technology, 2013, 47(11):5652-5659.
Google Scholar
|
[157] |
Miretzky P, Cirelli A F.Remediation of arsenic-contaminated soils by iron amendments:A review[J].Critical Reviews in Environmental Science and Technology, 2010, 40(2):93-115. doi: 10.1080/10643380802202059
CrossRef Google Scholar
|
[158] |
Fendorf S, Eick M J, Grossl P, et al.Arsenate and chromate retention mechanisms on goethite.1.Surface structure[J].Environmental Science & Technology, 1997, 31(2):315-320.
Google Scholar
|
[159] |
Luong V T, Kurz E E C, Hellriegel U, et al.Iron-based subsurface arsenic removal technologies by aeration:A review of the current state and future prospects[J].Water Research, 2018, 133:110-122. doi: 10.1016/j.watres.2018.01.007
CrossRef Google Scholar
|
[160] |
Matsumoto S, Kasuga J, Taiki N, et al.Inhibition of arsenic accumulation in japanese rice by the application of iron and silicate materials[J].Catena, 2015, 135:328-335. doi: 10.1016/j.catena.2015.07.004
CrossRef Google Scholar
|
[161] |
Ultra Jr V U, Nakayama A, Tanaka S, et al.Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments[J].Soil Science and Plant Nutrition, 2009, 55(1):160-169. doi: 10.1111/j.1747-0765.2008.00341.x
CrossRef Google Scholar
|
[162] |
Mladenov N, Zheng Y, Simone B, et al.Dissolved organic matter quality in a shallow aquifer of bangladesh:Implications for arsenic mobility[J].Environmental Science & Technology, 2015, 49(18):10815-10824.
Google Scholar
|
[163] |
Zeng H, Fisher B, Giammar D E.Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J].Environmental Science & Technology, 2008, 42(1):147-152.
Google Scholar
|
[164] |
Yu H Y, Wang X, Li F, et al.Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice[J].Environmental Pollution, 2017, 224:136-147. doi: 10.1016/j.envpol.2017.01.072
CrossRef Google Scholar
|
[165] |
Xu X, Chen C, Wang P, et al.Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution, 2017, 231:37-47. doi: 10.1016/j.envpol.2017.07.084
CrossRef Google Scholar
|
[166] |
Komárek M, Vaněk A, Ettler V.Chemical stabilization of metals and arsenic in contaminated soils using oxides-A review[J].Environmental Pollution, 2013, 172:9-22. doi: 10.1016/j.envpol.2012.07.045
CrossRef Google Scholar
|
[167] |
Lee C H, Wang C C, Lin H H, et al.In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil[J].Science of the Total Environment, 2018, 619-620:665-671. doi: 10.1016/j.scitotenv.2017.11.023
CrossRef Google Scholar
|
[168] |
Jayawardhana Y, Kumarathilaka P, Mayakaduwa S, et al.Characteristics of municipal solid waste biochar:Its potential to be used in environmental remediation[M]//Utilization and Management of Bioresources.2018:209-220.
Google Scholar
|
[169] |
Hashimoto Y, Kanke Y.Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J].Environmental Pollution, 2018, 238:617-623. doi: 10.1016/j.envpol.2018.03.039
CrossRef Google Scholar
|
[170] |
Jayawardhana Y, Mayakaduwa S S, Kumarathilaka P, et al.Municipal solid waste-derived biochar for the removal of benzene from landfill leachate[J].Environmental Geochemistry and Health, 2019, 41(4):1-15.
Google Scholar
|
[171] |
Bandara T, Herath I, Kumarathilaka P, et al.Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil[J].Environmental Geochemistry and Health, 2017, 39(2):391-401. doi: 10.1007/s10653-016-9842-0
CrossRef Google Scholar
|
[172] |
Herath I, Kumarathilaka P, Navaratne A, et al.Immo-bilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar[J].Journal of Soils and Sediments, 2015, 15(1):126-138. doi: 10.1007/s11368-014-0967-4
CrossRef Google Scholar
|
[173] |
Wang N, Xue X, Juhasz A L, et al.Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J].Environmental Pollution, 2017, 220:514-522. doi: 10.1016/j.envpol.2016.09.095
CrossRef Google Scholar
|
[174] |
Yin D, Wang X, Peng B, et al.Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J].Chemosphere, 2017, 186:928-937. doi: 10.1016/j.chemosphere.2017.07.126
CrossRef Google Scholar
|
[175] |
Kappler A, Wuestner M L, Ruecker A, et al.Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J].Environmental Science and Technology Letters, 2014, 1(8):339-344. doi: 10.1021/ez5002209
CrossRef Google Scholar
|
[176] |
Liu S, Lu Y, Yang C, et al.Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil[J].Environmental Science and Pollution Research, 2017, 24(30):23815-23824. doi: 10.1007/s11356-017-9994-1
CrossRef Google Scholar
|
[177] |
Lin L, Gao M, Qiu W, et al.Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments[J].Environmental Pollution, 2017, 231(1):479-486.
Google Scholar
|
[178] |
Yu Z, Qiu W, Wang F, et al.Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar[J].Chemosphere, 2017, 168:341-349. doi: 10.1016/j.chemosphere.2016.10.069
CrossRef Google Scholar
|
[179] |
Sardans J, Penuelas J.Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues[J].Environmental Monitoring & Assessment, 2006, 115(1-3):473-498.
Google Scholar
|